Narrow your search

Library

KU Leuven (10)

UAntwerpen (5)

VUB (5)

UCLouvain (4)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

UGent (3)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2016 (5)

2015 (1)

2009 (1)

1990 (1)

1984 (1)

More...
Listing 1 - 10 of 10
Sort by

Book
Existence and regularity of minimal surfaces on Riemannian manifolds
Author:
ISBN: 0691615004 0691642575 1400856450 9781400856459 0691082901 9780691082905 9780691615004 9780691615004 9780691642574 Year: 1981 Publisher: Princeton, N.J. [Tokyo] Princeton University Press University of Tokyo Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematical No/ex, 27Originally published in 1981.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Riemannian manifolds. --- Minimal surfaces. --- Surfaces, Minimal --- Maxima and minima --- Manifolds, Riemannian --- Riemannian space --- Space, Riemannian --- Geometry, Differential --- Manifolds (Mathematics) --- Differential geometry. Global analysis --- Addition. --- Analytic function. --- Branch point. --- Calculation. --- Cartesian coordinate system. --- Closed geodesic. --- Codimension. --- Coefficient. --- Compactness theorem. --- Compass-and-straightedge construction. --- Continuous function. --- Corollary. --- Counterexample. --- Covering space. --- Curvature. --- Curve. --- Decomposition theorem. --- Derivative. --- Differentiable manifold. --- Differential geometry. --- Disjoint union. --- Equation. --- Essential singularity. --- Estimation. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- First variation. --- Flat topology. --- Fundamental group. --- Geometric measure theory. --- Great circle. --- Homology (mathematics). --- Homotopy group. --- Homotopy. --- Hyperbolic function. --- Hypersurface. --- Integer. --- Line–line intersection. --- Manifold. --- Measure (mathematics). --- Minimal surface. --- Monograph. --- Natural number. --- Open set. --- Parameter. --- Partition of unity. --- Pointwise. --- Quantity. --- Regularity theorem. --- Riemann surface. --- Riemannian manifold. --- Scalar curvature. --- Scientific notation. --- Second fundamental form. --- Sectional curvature. --- Sequence. --- Sign (mathematics). --- Simply connected space. --- Smoothness. --- Sobolev inequality. --- Solid torus. --- Subgroup. --- Submanifold. --- Summation. --- Theorem. --- Topology. --- Two-dimensional space. --- Unit sphere. --- Upper and lower bounds. --- Varifold. --- Weak topology.


Book
Surface Area. (AM-35), Volume 35
Author:
ISBN: 140088232X Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Surface Area. (AM-35), Volume 35, will be forthcoming.

Keywords

Surfaces. --- Absolute continuity. --- Addition. --- Admissible set. --- Arc length. --- Axiom. --- Axiomatic system. --- Bearing (navigation). --- Bounded variation. --- Calculus of variations. --- Circumference. --- Compact space. --- Complex analysis. --- Concentric. --- Connected space. --- Continuous function (set theory). --- Continuous function. --- Corollary. --- Countable set. --- Covering set. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differential geometry. --- Direct proof. --- Dirichlet integral. --- Disjoint sets. --- Empty set. --- Equation. --- Equicontinuity. --- Existence theorem. --- Existential quantification. --- Function (mathematics). --- Functional analysis. --- Geometry. --- Hausdorff measure. --- Homeomorphism. --- Homotopy. --- Infimum and supremum. --- Integral geometry. --- Intersection number (graph theory). --- Interval (mathematics). --- Iterative method. --- Jacobian. --- Lebesgue integration. --- Lebesgue measure. --- Limit (mathematics). --- Limit point. --- Limit superior and limit inferior. --- Linearity. --- Line–line intersection. --- Locally compact space. --- Mathematician. --- Mathematics. --- Measure (mathematics). --- Metric space. --- Morphism. --- Natural number. --- Nonparametric statistics. --- Orientability. --- Parameter. --- Parametric equation. --- Parametric surface. --- Partial derivative. --- Potential theory. --- Radon–Nikodym theorem. --- Representation theorem. --- Representation theory. --- Right angle. --- Semi-continuity. --- Set function. --- Set theory. --- Sign (mathematics). --- Smoothness. --- Space-filling curve. --- Subset. --- Summation. --- Surface area. --- Tangent space. --- Theorem. --- Topological space. --- Topology. --- Total order. --- Total variation. --- Uniform convergence. --- Unit square.

Normal Two-Dimensional Singularities. (AM-71), Volume 71
Author:
ISBN: 069108100X 1400881749 9780691081007 Year: 2016 Volume: 71 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A survey, thorough and timely, of the singularities of two-dimensional normal complex analytic varieties, the volume summarizes the results obtained since Hirzebruch's thesis (1953) and presents new contributions. First, the singularity is resolved and shown to be classified by its resolution; then, resolutions are classed by the use of spaces with nilpotents; finally, the spaces with nilpotents are determined by means of the local ring structure of the singularity.

Keywords

Algebraic geometry --- Analytic spaces --- SINGULARITIES (Mathematics) --- 512.76 --- Singularities (Mathematics) --- Geometry, Algebraic --- Spaces, Analytic --- Analytic functions --- Functions of several complex variables --- Birational geometry. Mappings etc. --- Analytic spaces. --- Singularities (Mathematics). --- 512.76 Birational geometry. Mappings etc. --- Birational geometry. Mappings etc --- Analytic function. --- Analytic set. --- Analytic space. --- Automorphism. --- Bernhard Riemann. --- Big O notation. --- Calculation. --- Chern class. --- Codimension. --- Coefficient. --- Cohomology. --- Compact Riemann surface. --- Complex manifold. --- Computation. --- Connected component (graph theory). --- Continuous function. --- Contradiction. --- Coordinate system. --- Corollary. --- Covering space. --- Dimension. --- Disjoint union. --- Divisor. --- Dual graph. --- Elliptic curve. --- Elliptic function. --- Embedding. --- Existential quantification. --- Factorization. --- Fiber bundle. --- Finite set. --- Formal power series. --- Hausdorff space. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Intersection (set theory). --- Intersection number (graph theory). --- Inverse limit. --- Irreducible component. --- Isolated singularity. --- Iteration. --- Lattice (group). --- Line bundle. --- Linear combination. --- Line–line intersection. --- Local coordinates. --- Local ring. --- Mathematical induction. --- Maximal ideal. --- Meromorphic function. --- Monic polynomial. --- Nilpotent. --- Normal bundle. --- Open set. --- Parameter. --- Plane curve. --- Pole (complex analysis). --- Power series. --- Presheaf (category theory). --- Projective line. --- Quadratic transformation. --- Quantity. --- Riemann surface. --- Riemann–Roch theorem. --- Several complex variables. --- Submanifold. --- Subset. --- Tangent bundle. --- Tangent space. --- Tensor algebra. --- Theorem. --- Topological space. --- Transition function. --- Two-dimensional space. --- Variable (mathematics). --- Zero divisor. --- Zero of a function. --- Zero set. --- Variétés complexes --- Espaces analytiques

Topology of 4-manifolds
Authors: ---
ISBN: 0691085773 1306986230 0691602891 0691632340 1400861063 9780691085777 Year: 1990 Volume: 39 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

One of the great achievements of contemporary mathematics is the new understanding of four dimensions. Michael Freedman and Frank Quinn have been the principals in the geometric and topological development of this subject, proving the Poincar and Annulus conjectures respectively. Recognition for this work includes the award of the Fields Medal of the International Congress of Mathematicians to Freedman in 1986. In Topology of 4-Manifolds these authors have collaborated to give a complete and accessible account of the current state of knowledge in this field. The basic material has been considerably simplified from the original publications, and should be accessible to most graduate students. The advanced material goes well beyond the literature; nearly one-third of the book is new. This work is indispensable for any topologist whose work includes four dimensions. It is a valuable reference for geometers and physicists who need an awareness of the topological side of the field.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Differential topology --- Four-manifolds (Topology) --- Trois-variétés (Topologie) --- Vier-menigvuldigheden (Topologie) --- 4-dimensional manifolds (Topology) --- 4-manifolds (Topology) --- Four dimensional manifolds (Topology) --- Manifolds, Four dimensional --- Low-dimensional topology --- Topological manifolds --- 4-manifold. --- Ambient isotopy. --- Annulus theorem. --- Automorphism. --- Baire category theorem. --- Bilinear form. --- Boundary (topology). --- CW complex. --- Category of manifolds. --- Central series. --- Characterization (mathematics). --- Cohomology. --- Commutative diagram. --- Commutative property. --- Commutator subgroup. --- Compactification (mathematics). --- Conformal geometry. --- Connected sum. --- Connectivity (graph theory). --- Cyclic group. --- Diagram (category theory). --- Diameter. --- Diffeomorphism. --- Differentiable manifold. --- Differential geometry. --- Dimension. --- Disk (mathematics). --- Duality (mathematics). --- Eigenvalues and eigenvectors. --- Embedding problem. --- Embedding. --- Equivariant map. --- Fiber bundle. --- Four-dimensional space. --- Fundamental group. --- General position. --- Geometry. --- H-cobordism. --- Handlebody. --- Hauptvermutung. --- Homeomorphism. --- Homology (mathematics). --- Homology sphere. --- Homomorphism. --- Homotopy group. --- Homotopy sphere. --- Homotopy. --- Hurewicz theorem. --- Hyperbolic geometry. --- Hyperbolic group. --- Hyperbolic manifold. --- Identity matrix. --- Intermediate value theorem. --- Intersection (set theory). --- Intersection curve. --- Intersection form (4-manifold). --- Intersection number (graph theory). --- Intersection number. --- J-homomorphism. --- Knot theory. --- Lefschetz duality. --- Line–line intersection. --- Manifold. --- Mapping cylinder. --- Mathematical induction. --- Metric space. --- Metrization theorem. --- Module (mathematics). --- Normal bundle. --- Parametrization. --- Parity (mathematics). --- Product topology. --- Pullback (differential geometry). --- Regular homotopy. --- Ring homomorphism. --- Rotation number. --- Seifert–van Kampen theorem. --- Sesquilinear form. --- Set (mathematics). --- Simply connected space. --- Smooth structure. --- Special case. --- Spin structure. --- Submanifold. --- Subset. --- Support (mathematics). --- Tangent bundle. --- Tangent space. --- Tensor product. --- Theorem. --- Topological category. --- Topological manifold. --- Transversal (geometry). --- Transversality (mathematics). --- Transversality theorem. --- Uniqueness theorem. --- Unit disk. --- Vector bundle. --- Whitehead torsion. --- Whitney disk.

Topics in transcendental algebraic geometry
Author:
ISBN: 0691083355 0691083398 140088165X Year: 1984 Publisher: Princeton (N.J.): Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Topics in Transcendental Algebraic Geometry. (AM-106), Volume 106, will be forthcoming.

Keywords

Geometry, Algebraic. --- Hodge theory. --- Torelli theorem. --- Géométrie algébrique --- Théorie de Hodge --- Geometry, Algebraic --- Hodge theory --- Torelli theorem --- 512.7 --- Torelli's theorem --- Curves, Algebraic --- Jacobians --- Complex manifolds --- Differentiable manifolds --- Homology theory --- Algebraic geometry --- Geometry --- Algebraic geometry. Commutative rings and algebras --- 512.7 Algebraic geometry. Commutative rings and algebras --- Géométrie algébrique --- Théorie de Hodge --- Abelian integral. --- Algebraic curve. --- Algebraic cycle. --- Algebraic equation. --- Algebraic geometry. --- Algebraic integer. --- Algebraic structure. --- Algebraic surface. --- Arithmetic genus. --- Arithmetic group. --- Asymptotic analysis. --- Automorphism. --- Base change. --- Bilinear form. --- Bilinear map. --- Cohomology. --- Combinatorics. --- Commutative diagram. --- Compactification (mathematics). --- Complete intersection. --- Complex manifold. --- Complex number. --- Computation. --- Deformation theory. --- Degeneracy (mathematics). --- Differentiable manifold. --- Dimension (vector space). --- Divisor (algebraic geometry). --- Divisor. --- Elliptic curve. --- Elliptic surface. --- Equation. --- Exact sequence. --- Fiber bundle. --- Function (mathematics). --- Fundamental class. --- Geometric genus. --- Geometry. --- Hermitian symmetric space. --- Hodge structure. --- Homology (mathematics). --- Homomorphism. --- Homotopy. --- Hypersurface. --- Intersection form (4-manifold). --- Intersection number. --- Irreducibility (mathematics). --- Isomorphism class. --- Jacobian variety. --- K3 surface. --- Kodaira dimension. --- Kronecker's theorem. --- Kummer surface. --- Kähler manifold. --- Lie algebra bundle. --- Lie algebra. --- Linear algebra. --- Linear algebraic group. --- Line–line intersection. --- Mathematical induction. --- Mathematical proof. --- Mathematics. --- Modular arithmetic. --- Module (mathematics). --- Moduli space. --- Monodromy matrix. --- Monodromy theorem. --- Monodromy. --- Nilpotent orbit. --- Normal function. --- Open set. --- Period mapping. --- Permutation group. --- Phillip Griffiths. --- Point at infinity. --- Pole (complex analysis). --- Polynomial. --- Projective space. --- Pullback (category theory). --- Quadric. --- Regular singular point. --- Resolution of singularities. --- Riemann–Roch theorem for surfaces. --- Scientific notation. --- Set (mathematics). --- Special case. --- Spectral sequence. --- Subgroup. --- Submanifold. --- Surface of general type. --- Surjective function. --- Tangent bundle. --- Theorem. --- Topology. --- Transcendental number. --- Vector space. --- Zariski topology. --- Zariski's main theorem.

Braids, Links, and Mapping Class Groups. (AM-82), Volume 82
Author:
ISBN: 0691081492 1400881420 9780691081496 Year: 2016 Volume: 82 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology.In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems.Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix.

Keywords

Braid theory --- Braids, Theory of --- Theory of braids --- Braid theory. --- Algebraic topology --- Knot theory --- Representations of groups --- 512.54 --- Group representation (Mathematics) --- Groups, Representation theory of --- Group theory --- Knots (Topology) --- Low-dimensional topology --- 512.54 Groups. Group theory --- Groups. Group theory --- Knot theory. --- Representations of groups. --- Addition. --- Alexander polynomial. --- Algebraic structure. --- Automorphism. --- Ball (mathematics). --- Bijection. --- Braid group. --- Branched covering. --- Burau representation. --- Calculation. --- Cartesian coordinate system. --- Characterization (mathematics). --- Coefficient. --- Combinatorial group theory. --- Commutative property. --- Commutator subgroup. --- Configuration space. --- Conjugacy class. --- Corollary. --- Covering space. --- Dehn twist. --- Determinant. --- Diagram (category theory). --- Dimension. --- Disjoint union. --- Double coset. --- Eigenvalues and eigenvectors. --- Enumeration. --- Equation. --- Equivalence class. --- Exact sequence. --- Existential quantification. --- Faithful representation. --- Finite set. --- Free abelian group. --- Free group. --- Fundamental group. --- Geometry. --- Group (mathematics). --- Group ring. --- Groupoid. --- Handlebody. --- Heegaard splitting. --- Homeomorphism. --- Homomorphism. --- Homotopy group. --- Homotopy. --- Identity element. --- Identity matrix. --- Inclusion map. --- Initial point. --- Integer matrix. --- Integer. --- Knot polynomial. --- Lens space. --- Line segment. --- Line–line intersection. --- Link group. --- Low-dimensional topology. --- Mapping class group. --- Mathematical induction. --- Mathematics. --- Matrix group. --- Matrix representation. --- Monograph. --- Morphism. --- Natural transformation. --- Normal matrix. --- Notation. --- Orientability. --- Parity (mathematics). --- Permutation. --- Piecewise linear. --- Pointwise. --- Polynomial. --- Prime knot. --- Projection (mathematics). --- Proportionality (mathematics). --- Quotient group. --- Requirement. --- Rewriting. --- Riemann surface. --- Semigroup. --- Sequence. --- Special case. --- Subgroup. --- Submanifold. --- Subset. --- Symmetric group. --- Theorem. --- Theory. --- Topology. --- Trefoil knot. --- Two-dimensional space. --- Unimodular matrix. --- Unit vector. --- Variable (mathematics). --- Word problem (mathematics). --- Topologie algébrique


Book
Outer billiards on kites
Author:
ISBN: 1282458582 9786612458583 1400831970 9781400831975 0691142483 9780691142487 0691142491 9780691142494 9781282458581 6612458585 Year: 2009 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950's, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.

Keywords

Hyperbolic spaces. --- Singularities (Mathematics) --- Transformations (Mathematics) --- Geometry, Plane. --- Plane geometry --- Algorithms --- Differential invariants --- Geometry, Differential --- Geometry, Algebraic --- Hyperbolic complex manifolds --- Manifolds, Hyperbolic complex --- Spaces, Hyperbolic --- Geometry, Non-Euclidean --- Abelian group. --- Automorphism. --- Big O notation. --- Bijection. --- Binary number. --- Bisection. --- Borel set. --- C0. --- Calculation. --- Cantor set. --- Cartesian coordinate system. --- Combination. --- Compass-and-straightedge construction. --- Congruence subgroup. --- Conjecture. --- Conjugacy class. --- Continuity equation. --- Convex lattice polytope. --- Convex polytope. --- Coprime integers. --- Counterexample. --- Cyclic group. --- Diameter. --- Diophantine approximation. --- Diophantine equation. --- Disjoint sets. --- Disjoint union. --- Division by zero. --- Embedding. --- Equation. --- Equivalence class. --- Ergodic theory. --- Ergodicity. --- Factorial. --- Fiber bundle. --- Fibonacci number. --- Fundamental domain. --- Gauss map. --- Geometry. --- Half-integer. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperplane. --- Ideal triangle. --- Intersection (set theory). --- Interval exchange transformation. --- Inverse function. --- Inverse limit. --- Isometry group. --- Lattice (group). --- Limit set. --- Line segment. --- Linear algebra. --- Linear function. --- Line–line intersection. --- Main diagonal. --- Modular group. --- Monotonic function. --- Multiple (mathematics). --- Orthant. --- Outer billiard. --- Parallelogram. --- Parameter. --- Partial derivative. --- Penrose tiling. --- Permutation. --- Piecewise. --- Polygon. --- Polyhedron. --- Polytope. --- Product topology. --- Projective geometry. --- Rectangle. --- Renormalization. --- Rhombus. --- Right angle. --- Rotational symmetry. --- Sanity check. --- Scientific notation. --- Semicircle. --- Sign (mathematics). --- Special case. --- Square root of 2. --- Subsequence. --- Summation. --- Symbolic dynamics. --- Symmetry group. --- Tangent. --- Tetrahedron. --- Theorem. --- Toy model. --- Translational symmetry. --- Trapezoid. --- Triangle group. --- Triangle inequality. --- Two-dimensional space. --- Upper and lower bounds. --- Upper half-plane. --- Without loss of generality. --- Yair Minsky.


Book
Contributions to the Theory of Nonlinear Oscillations (AM-41), Volume IV
Author:
ISBN: 1400881757 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Contributions to the Theory of Nonlinear Oscillations (AM-41), Volume IV, will be forthcoming.

Keywords

Nonlinear oscillations. --- Algebraic curve. --- Analytic continuation. --- Analytic function. --- Asymptotic analysis. --- Banach space. --- Big O notation. --- Boundary value problem. --- Calculation. --- Canonical transformation. --- Cartesian coordinate system. --- Change of variables. --- Characteristic exponent. --- Coefficient. --- Computation. --- Conic section. --- Continuous function. --- Convex set. --- Counterexample. --- Curvature. --- Curve. --- Degrees of freedom (statistics). --- Derivative. --- Diagram (category theory). --- Differentiable function. --- Differential equation. --- Dimension. --- Dimensional analysis. --- Division by zero. --- Eigenvalues and eigenvectors. --- Elementary proof. --- Equation. --- Essential singularity. --- Existence theorem. --- Existential quantification. --- Exterior (topology). --- Fixed-point theorem. --- Forcing (mathematics). --- Forcing (recursion theory). --- Function space. --- Functional equation. --- Hamiltonian system. --- Hyperplane. --- Inflection point. --- Initial condition. --- Initial value problem. --- Integral equation. --- Inverse function. --- Iteration. --- Lagrangian mechanics. --- Lefschetz fixed-point theorem. --- Limit cycle. --- Limit of a sequence. --- Limit point. --- Limit set. --- Line segment. --- Linearity. --- Line–line intersection. --- Lipschitz continuity. --- Lyapunov stability. --- Mathematical optimization. --- Mathematics. --- Monotonic function. --- Newton polygon. --- Nonlinear system. --- Orbital stability. --- Ordinary differential equation. --- Ordinate. --- Parameter. --- Parametrization. --- Parity (mathematics). --- Partial derivative. --- Periodic function. --- Periodic point. --- Perturbation theory (quantum mechanics). --- Phase space. --- Power series. --- Principal part. --- Proportionality (mathematics). --- Quadratic. --- Real variable. --- Scalar (physics). --- Scientific notation. --- Sign (mathematics). --- Significant figures. --- Solomon Lefschetz. --- Special case. --- Sturm–Liouville theory. --- Subset. --- Surface of revolution. --- Theorem. --- Theory. --- Three-dimensional space (mathematics). --- Transversal (geometry). --- Unification (computer science). --- Upper half-plane. --- Variable (mathematics). --- Variational method (quantum mechanics). --- Vector field. --- Vector notation. --- Zero of a function.


Book
Global Variational Analysis : Weierstrass Integrals on a Riemannian Manifold. (MN-16)
Author:
ISBN: 0691617252 0691644403 1400870437 Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book builds upon the revolutionary discovery made in 1974 that when one passes from function f to a function J of paths joining two points A1≠A1 the connectivities R1 of the domain of f can be replaced by connectivities R1 over Q, common to the pathwise components of a basic Frechet space of classes of equivalent curves joining A1 to A1. The connectivities R1, termed "Frechet numbers," are proved independent of the choice of A1 ≠ A1, and of a replacement of Mn by any differential manifold homeomorphic to Mn.Originally published in 1976.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Differentiable manifolds. --- Global analysis (Mathematics) --- Calculus of variations. --- Algebraic topology. --- Analytic function. --- Arc length. --- Axiom. --- Bernhard Riemann. --- Boundary value problem. --- Cartesian coordinate system. --- Coefficient. --- Compact space. --- Computation. --- Conjugate points. --- Connectivity (graph theory). --- Continuous function. --- Corollary. --- Countable set. --- Counting. --- Cramer's rule. --- Curve. --- Deformation theory. --- Degeneracy (mathematics). --- Derivative. --- Diffeomorphism. --- Differentiable manifold. --- Differential equation. --- Differential geometry. --- Differential structure. --- Dimension. --- Domain of a function. --- Eilenberg. --- Einstein notation. --- Equation. --- Euclidean space. --- Euler characteristic. --- Euler equations (fluid dynamics). --- Euler integral. --- Existence theorem. --- Existential quantification. --- Exotic sphere. --- Family of curves. --- Finite set. --- First variation. --- Geometry. --- Global analysis. --- Homeomorphism. --- Homology (mathematics). --- Homotopy. --- Implicit function theorem. --- Inference. --- Integer. --- Intersection (set theory). --- Interval (mathematics). --- Invertible matrix. --- Jacobian matrix and determinant. --- Lagrange multiplier. --- Linear combination. --- Linear map. --- Line–line intersection. --- Mathematical proof. --- Maximal set. --- Metric space. --- N-sphere. --- Neighbourhood (mathematics). --- Null vector. --- Open set. --- Pairwise. --- Parameter. --- Parametric equation. --- Parametrization. --- Partial derivative. --- Partial function. --- Phase space. --- Positive definiteness. --- Projective plane. --- Quadratic form. --- Quadratic. --- Rate of convergence. --- Rational number. --- Real variable. --- Resultant. --- Riemannian manifold. --- Scientific notation. --- Sign (mathematics). --- Special case. --- Sturm separation theorem. --- Submanifold. --- Subsequence. --- Subset. --- Taylor's theorem. --- Tensor algebra. --- Theorem. --- Theory. --- Topological manifold. --- Topological space. --- Topology. --- Tuple. --- Unit vector. --- Variable (mathematics). --- Variational analysis. --- Weierstrass function. --- Without loss of generality.

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32).
Author:
ISBN: 140088389X 069108078X 9781400883899 9780691080789 Year: 2016 Volume: 32 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Keywords

Harmonic analysis. --- Harmonic functions. --- Functions, Harmonic --- Laplace's equations --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Harmonic analysis. Fourier analysis --- Harmonic analysis --- Fourier analysis --- Harmonic functions --- Analyse harmonique --- Analyse de Fourier --- Fonctions harmoniques --- Fourier Analysis --- Fourier, Transformations de --- Euclide, Espaces d' --- Bessel functions --- Differential equations, Partial --- Fourier series --- Lamé's functions --- Spherical harmonics --- Toroidal harmonics --- Banach algebras --- Time-series analysis --- Analysis, Fourier --- Fourier analysis. --- Basic Sciences. Mathematics --- Analysis, Functions --- Analysis, Functions. --- Calculus --- Mathematical analysis --- Mathematics --- Fourier, Transformations de. --- Euclide, Espaces d'. --- Potentiel, Théorie du --- Fonctions harmoniques. --- Potential theory (Mathematics) --- Analytic continuation. --- Analytic function. --- Banach algebra. --- Banach space. --- Bessel function. --- Borel measure. --- Boundary value problem. --- Bounded operator. --- Bounded set (topological vector space). --- Cartesian coordinate system. --- Cauchy–Riemann equations. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Complex plane. --- Conformal map. --- Conjugate transpose. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Differentiation of integrals. --- Dimensional analysis. --- Dirichlet problem. --- Disk (mathematics). --- Distribution (mathematics). --- Equation. --- Euclidean space. --- Existential quantification. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fubini's theorem. --- Function (mathematics). --- Function space. --- Green's theorem. --- Hardy's inequality. --- Hardy–Littlewood maximal function. --- Harmonic function. --- Hermitian matrix. --- Hilbert transform. --- Holomorphic function. --- Homogeneous function. --- Inequality (mathematics). --- Infimum and supremum. --- Interpolation theorem. --- Interval (mathematics). --- Lebesgue integration. --- Lebesgue measure. --- Linear interpolation. --- Linear map. --- Linear space (geometry). --- Line–line intersection. --- Liouville's theorem (Hamiltonian). --- Lipschitz continuity. --- Locally integrable function. --- Lp space. --- Majorization. --- Marcinkiewicz interpolation theorem. --- Mean value theorem. --- Measure (mathematics). --- Mellin transform. --- Monotonic function. --- Multiplication operator. --- Norm (mathematics). --- Operator norm. --- Orthogonal group. --- Paley–Wiener theorem. --- Partial derivative. --- Partial differential equation. --- Plancherel theorem. --- Pointwise convergence. --- Poisson kernel. --- Poisson summation formula. --- Polynomial. --- Principal value. --- Quadratic form. --- Radial function. --- Radon–Nikodym theorem. --- Representation theorem. --- Riesz transform. --- Scientific notation. --- Series expansion. --- Singular integral. --- Special case. --- Subharmonic function. --- Support (mathematics). --- Theorem. --- Topology. --- Total variation. --- Trigonometric polynomial. --- Trigonometric series. --- Two-dimensional space. --- Union (set theory). --- Unit disk. --- Unit sphere. --- Upper half-plane. --- Variable (mathematics). --- Vector space. --- Fourier, Analyse de --- Potentiel, Théorie du. --- Potentiel, Théorie du --- Espaces de hardy

Listing 1 - 10 of 10
Sort by