Narrow your search

Library

FARO (108)

KU Leuven (108)

LUCA School of Arts (108)

Odisee (108)

Thomas More Kempen (108)

Thomas More Mechelen (108)

UCLL (108)

VIVES (108)

Vlaams Parlement (108)

UGent (39)

More...

Resource type

book (108)


Language

English (107)

German (1)


Year
From To Submit

2023 (2)

2022 (35)

2021 (33)

2020 (19)

2019 (12)

More...
Listing 1 - 10 of 108 << page
of 11
>>
Sort by

Book
Additive Fertigung von endlosfaserverstärkten Verbundwerkstoffen: Von der Faser-Matrix-Auswahl über die Druckkopfentwicklung bis zum Faserverbund
Author:
Year: 2022 Publisher: Berlin Universitätsverlag der Technischen Universität Berlin

Loading...
Export citation

Choose an application

Bookmark

Abstract

The integration of endless fiber reinforced composites in additive manufacturing enables the automated production of materials with high mechanical properties such as strength. The current state of the art utilizing print heads with separate fiber and matrix feeds showed that, without active infiltration, the fiber infiltration is poor or not possible for thermoplastics with low flowability (high viscosity). In this work, the improvement of the print head technology and the investigated infiltration effect lead to a significantly higher infiltration. The material selection of thermoplastic matrix (PA6) and fiber reinforcement (carbon fiber) were adjusted for the new process parameters. The selection of the fiber matrix combination was conducted using the interfacial tension calculations at room temperature. The polar and dispersive surface energy of two different carbon fibers as well as the wetting of PA6 polymer melts on carbon fibers and on aluminum carriers were investigated. The calculation of composite properties using material data of the matrix and fiber was used to determine the process windows for specific parameters such as layer height, layer width and nozzle size. Furthermore, the mechanical properties and the cost of the composite can be determined in relationship with the materials used and the fiber volume content. The composition of the fiber sizing and the influence of high processing temperatures was characterized using TGA, FTIR spectroscopy and XPS analysis. The processing parameters and rheological behavior of PA6 thermoplastic resins and mixtures were investigated, and a mixture of 75 wt.% Ultramid B3k and wt.25% of Ultramid B50l from BASF was used for the composite fabrication by material extrusion. The optimization of the extrusion process enables the production of filaments with higher flowability (low zero viscosity), with the fiber infiltration improved by the adjusted rheological behavior. Samples for mechanical and optical analysis were fabricated using the self developed print head and three different types of carbon fibers. Three point bending properties were investigated as a function of layer height and printing temperature; tensile properties of single composite strands fabricated with different printing temperatures and multilayer composite were also characterized. The fiber volume content and the porosity were evaluated in crosssectional analyses. The investigated material combinations, optimization of process parameters and the fiber roving infiltration effect in the print head leads to higher mechanical properties and lower porosity in the composite.


Book
3D Printed Microfluidic Devices
Authors: ---
ISBN: 3038974684 3038974676 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

3D printing has revolutionized the microfabrication prototyping workflow over the past few years. With the recent improvements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols as a promising alternative to the time consuming, costly and sophisticated traditional cleanroom fabrication. Microfluidic devices have enabled a wide range of biochemical and clinical applications, such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. Using 3D printing fabrication technologies, alteration of the design features is significantly easier than traditional fabrication, enabling agile iterative design and facilitating rapid prototyping. This can make microfluidic technology more accessible to researchers in various fields and accelerates innovation in the field of microfluidics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in 3D printing and its use for various biochemical and biomedical applications.


Book
Novel Biocomposite Engineering and Bio-Applications
Author:
ISBN: 3038973831 3038973823 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The engineering and utilization of biocomposites is a research field of major scientific and industrial interest worldwide. The biocomposite area is extensive and spans from structured and solid biocomposites (e.g., reinforced bioabsorbable polymers), films (e.g., antimicrobial barriers), to soft biocomposites (e.g., use of alginates, collagen and nanocellulose as components in bioinks for 3D bioprinting). Key aspects in this respect are the appropriate engineering and production of biomaterials, nanofibres, bioplastics, their functionalization enabling intelligent and active materials, processes for effective manufacturing of biocomposites and the corresponding characterization for understanding their properties. The current Special Issue emphasizes the bio-technological engineering of novel biomaterials and biocomposites, considering also important safety aspects in the production and use of bio- and nanomaterials.


Book
Current Advances in Soft Robotics: Best Papers from RoboSoft 2018
Authors: --- --- --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
3D Printing of Metals
Author:
ISBN: 3038425923 3038425915 Year: 2017 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Three-dimensional printing is a futuristic technology capable of transforming the ways in which we make components and devices. It is almost certain that this technique will find its niche in the manufacturing sector in the very near future. In view of the growing importance of 3D printing, this book addresses key issues related to emerging science and technology in this area. Detailed and informative articles are presented in relation to a wide variety of materials, including those based on critical engineering metals such as aluminum, magnesium, titanium and composites. Advances in various techniques, such as electron beam melting and selective laser melting are discussed. Of key importance in the area of materials science is the end properties of the materials following processing. Accordingly, the articles presented critically discuss the effects of microstructural features such as porosity, forming defects and the heat treatment induced effects on the mechanical properties. Applications covered in these articles are targeted at the aerospace, automobile, defense and aerospace sectors. Overall, the information presented in this book is of significant importance for academic and industrial-based researchers who wish to inform themselves regarding this upcoming highly promising manufacturing technique.


Book
New trends in 3D printing
Authors: ---
ISBN: 9535124803 9535157787 953512479X Year: 2016 Publisher: IntechOpen

Loading...
Export citation

Choose an application

Bookmark

Abstract

A quarter century period of the 3D printing technology development affords ground for speaking about new realities or the formation of a new technological system of digital manufacture and partnership. The up-to-date 3D printing is at the top of its own overrated expectations. So the development of scalable, high-speed methods of the material 3D printing aimed to increase the productivity and operating volume of the 3D printing machines requires new original decisions. It is necessary to study the 3D printing applicability for manufacturing of the materials with multilevel hierarchical functionality on nano-, micro- and meso-scales that can find applications for medical, aerospace and/or automotive industries. Some of the above-mentioned problems and new trends are considered in this book.


Book
3D Printing of Metal
Author:
ISBN: 3036568646 3036568654 Year: 2023 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal 3D printing, as an advanced forming, can manufacture parts directly from digital model by using layer by layer material build-up approach. This manufacturing method can prepare complex shape metal parts in short time, with and high precision. Three-dimensional printing processes can be classified into two major groups: Powder Bed Fusion-based technologies and Directed Energy Deposition. Three-dimensional printing features freedom of part complexity, part design, and light-weighting for aerospace, automobile, and other industries application. The Global Metal 3D Printing Market is mainly driven by the the fast developing of aerospace and automobile industry. The Global Metal 3D Printing Market size was valued at USD 534.18 Million in 2020 and is projected to reach USD 4458.76 Million by 2028, growing at a CAGR of 30.38% from 2021 to 2028.


Book
3D Printing
Authors: ---
ISBN: 1789239664 1789239656 1838817883 Year: 2018 Publisher: IntechOpen

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, ""3D Printing"", is divided into two parts: the first part is devoted to the relationship between 3D printing and engineering, and the second part shows the impact of 3D printing on the medical sector in general. There are five sections in the first part (sections are dedicated to stereolithography, new techniques of high-resolution 3D printing, application of 3D printers in architecture and civil engineering, the additive production with the metal components and the management of production by using previously mentioned technology in more complex ways). There are four chapters in the second part with the following topics: education of medical staff through surgical simulations, tissue engineering and potential applications of 3D printing in ophthalmology and orthopedics.


Book
3D printing with biomaterials : towards a sustainable and circular economy
Authors: ---
ISBN: 1614994862 1614994854 9781614994862 9781614994855 Year: 2015 Publisher: IOS Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing or 3D printing, manufacturing a product layer by layer, offers large design freedom and faster product development cycles, as well as low startup cost of production, on-demand production and local production. In principle, any product could be made by additive manufacturing. Even food and living organic cells can be printed. We can create, design and manufacture what we want at the location we want. 3D printing will create a revolution in manufacturing, a real paradigm change. 3D printing holds the promise to manufacture with less waste and energy. We can print metals, ceramics, sand, synthetic materials such as plastics, food or living cells. However, the production of plastics is nowadays based on fossil fuels. And that’s where we witness a paradigm change too. The production of these synthetic materials can be based also on biomaterials with biomass as feedstock. A wealth of new and innovative products are emerging when we combine these two paradigm changes: 3D printing and biomaterials. Moreover, the combination of 3D printing with biomaterials holds the promise to realize a truly sustainable and circular economy.


Book
Fabricate 2014
Authors: --- ---
ISBN: 9781787352148 1787352145 Year: 2017 Publisher: UCL Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

FABRICATE is an international peer reviewed conference that takes place every three years with a supporting publication on the theme of Digital Fabrication. Discussing the progressive integration of digital design with manufacturing processes, and its impact on design and making in the 21st century, FABRICATE brings together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation. Discussion on key themes includes: how digital fabrication technologies are enabling new creative and construction opportunities from component to building scales, the difficult gap that exists between digital modelling and its realisation, material performance and manipulation, off-site and on-site construction, interdisciplinary education, economic and sustainable contexts. FABRICATE features cutting-edge built work from both academia and practice, making it a unique event that attracts delegates from all over the world.

Listing 1 - 10 of 108 << page
of 11
>>
Sort by