Narrow your search

Library

FARO (11)

KU Leuven (11)

LUCA School of Arts (11)

Odisee (11)

Thomas More Kempen (11)

Thomas More Mechelen (11)

UCLL (11)

VIVES (11)

Vlaams Parlement (11)

UGent (9)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2022 (1)

2021 (2)

2020 (2)

2019 (6)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Running Dynamics of Rail Vehicles
Authors: ---
ISBN: 3036553800 3036553797 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The investigation of rail vehicle running dynamics plays an important role in the more than 200 year development of railway vehicles and infrastructure. Currently, there are a number of new requirements for rail transport associated with the reduced environmental impact, energy consumption and wear, whilst increasing train speed and passenger comfort. Therefore, the running dynamics of rail vehicles is still a research topic that requires improved simulation tools and experimental procedures. The book focuses on the current research topics in railway vehicles running dynamics. Special attention is given to high-speed railway transport, acoustic and vibrational impact of railway transport to the surroundings, optimization of energy supply systems for railway transport, traction drives optimization and wear of wheels and rails.


Book
Superhydrophobic Coatings for Corrosion and Tribology
Authors: ---
ISBN: 3039217852 3039217844 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Superhydrophobic surfaces, with a water contact angle >150°, have attracted both academic and industrial interest due to their wide range of applications, such as water proofing, anti-fogging, antifouling, anti-icing, fluidic drag reduction and anti-corrosion. Currently the majority of superhydrophobic coatings are created using organic chemicals with low surface energy. However, the lack of mechanical strength and heat resistance prevents the use of these coatings in harsh environments. Quality superhydrophobic coatings developed using inorganic materials are therefore highly sought after. Ceramics are of particular interest due to their high mechanical strength, heat and corrosion resistance. Such superhydrophobic coatings have recently been successfully fabricated using a variety of ceramics and different approaches, and have shown the improved wear and tribocorrosion resistance properties. This Special Issue focuses on the recent developments in the fabrication of superhydrophobic coatings and their robustness against corrosion and wear resistance, but the original work on other properties of superhydrophobic coatings are also welcome. In particular, the topics of interest include, but are not limited to: Robust superhydrophobic coatings; Coatings with super-wettability in multifunctional applications; Wetting effects on corrosion and tribology; Hierarchical Coating for wetting and modelling.


Book
Advanced Methods for Seismic Performance Evaluation of Building Structures
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue was created to collect the most recent and novel research on seismic performance evaluation of building structures. This issue includes three important topics on seismic engineering for building structures: (1) seismic design and performance evaluation, (2) structural dynamics, and (3) seismic hazard and risk analysis. To protect building structures from earthquakes, it is necessary to conduct seismic performance evaluations on structures with reliable methods and to retrofit these structures appropriately using the results of the seismic performance evaluation.


Book
CFD Based Researches and Applications for Fluid Machinery and Fluid Device
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The demand for computational fluid dynamics (CFD)-based numerical techniques is increasing rapidly with the development of the computing power system. These advanced CFD techniques are applicable to various issues in the industrial engineering fields and especially contribute to the design of fluid machinery and fluid devices, which have very complicated unsteady flow phenomena and physics. In other words, to aid the rapid development of CFD techniques, the performances of fluid machinery and fluid devices with complicated unsteady flows have been enhanced significantly. In addition, many persistently troublesome problems of fluid machinery and fluid devices such as flow instability, rotor–stator interaction, surging, cavitation, vibration, and noise are solved clearly using advanced CFD techniques.This Special Issue on “CFD-Based Research and Applications for Fluid Machinery and Fluid Devices” aims to present recent novel research trends based on advanced CFD techniques for fluid machinery and fluid devices. The following topics, among others, are included in this issue:- CFD techniques and applications in fluid machinery and fluid devices;- Unsteady and transient phenomena in fluid machinery and fluid devices;- Pumps, fans, compressors, hydraulic turbines, pump turbines, valves, etc.

Keywords

centrifugal fan --- noise characteristics --- power consumption --- negative pressure --- sound pressure --- mechanical seal --- dynamic characteristics --- extrusion fault --- numerical simulation --- sealing performance --- fluent --- inducer --- step casing --- varying pitch --- cavitating flow and instabilities --- partial similarity principle --- flow similarity --- stability improvement --- multi-condition optimization --- cavitation performance --- artificial neural networks (ANN) --- net positive suction head (NPSH) --- double suction --- cascade --- aerodynamic --- parameterization --- plane cascade design --- incidence angle --- PSO-MVFSA --- optimization --- two-vane pump --- Computational Fluid Dynamics (CFD) --- Reynolds-averaged Navier-Stokes (RANS) --- machine learning --- energy recovery --- pump as turbine --- vortex --- hydraulic losses --- pressure fluctuation --- transient characteristics --- centrifugal pump --- startup period --- solar air heater --- ribs --- Nusselt number --- friction factor --- Reynolds-averaged Navier–Stokes equations --- thrust coefficient --- power coefficient --- figure of merit --- frozen rotor --- UAV --- octorotor SUAV --- aerodynamic performance --- rotor spacing --- hover --- CFD --- vortices distribution --- shape optimization --- Francis turbine --- fixed flow passage --- flow uniformity --- blade outlet angle --- Sirocco fan --- URANS --- volute tongue radius --- internal flow --- noise --- film cooling --- large eddy simulation --- triple holes --- blowing ratio --- adiabatic film-cooling effectiveness --- proper orthogonal decomposition --- axial compressor --- tip clearance --- flow field --- clearance --- flow function --- gas turbine --- leakage --- pressure ratio --- stepped labyrinth seal --- axial-flow pump --- root clearance radius --- computational fluid dynamics --- entropy production --- energy dissipation --- vortex pump --- lateral cavity --- open-design --- spiral flow --- reactor coolant pump (RCP) --- waviness --- leakage rate --- liquid film --- axial fan --- reversible --- jet --- design --- thrust --- energy characteristics --- mixing --- pitched blade turbine --- impeller --- inverse design method --- matching optimization --- diffuser --- small hydropower --- tubular turbine --- fish farm --- performance test --- design factors --- optimum model --- the mixed free-surface-pressurized flow --- characteristic implicit method --- relative roughness --- vent holes --- optimization control --- microchannel heat sink --- wavy microchannel --- groove --- heat transfer performance --- laminar flow --- multi-objective optimization --- LHS --- full factorial methods --- pump-turbine --- dynamic stress --- start-up process --- vortex generator (VG) --- computational fluid dynamics (CFD) --- cell-set model --- RANS --- LES --- multistage centrifugal pump --- double-suction impeller --- twin-volute --- inducer-type guide vane --- trailing edge flap (TEF) --- trailing edge flap with Micro-Tab --- deflection angle of the flap (αF) --- n/a --- Reynolds-averaged Navier-Stokes equations


Book
Additive Manufacturing: Alloy Design and Process Innovations.
Authors: ---
ISBN: 3039284150 3039284142 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

microstructure --- slag --- crystallographic texture --- epoxy solder --- additive manufacturing --- substrate preheating --- thermosetting epoxy resin --- AlSi10Mg alloy --- impact --- residual stress --- stability lobe diagram --- laves phase --- vanadium --- selective laser melting (SLM) --- molten pool dynamic behavior --- scanning strategy --- pulse frequency --- thin-walled weak rigidity parts --- scanning --- aluminum --- elastic abrasive --- 2219 aluminum alloy --- Powder bed --- ABS --- laser energy density --- equivalent processing model --- composition --- numerical analysis --- scanning electron microscopy (SEM) --- Hastelloy X alloy --- regular mixing --- texture evolution --- graphene nano-sheets (GNSs) --- Electron Beam Melting --- powder bed fusion --- microstructural evolution --- Mg content --- cement --- bulk metallic glasses --- grain refinement --- Taguchi --- intermediate thermo-mechanical treatment --- valorization --- microstructure and properties --- arc current --- high computational efficiency --- powder properties --- dynamic characteristics --- composite materials --- CuAl2 phase --- rapid solidification --- magnetizer --- M300 mold steel --- circular economy --- titanium alloy --- Al–5Si alloy --- Al–Mg–Si alloy --- ultrasonic bonding --- water absorption --- disc brake --- support strategy --- inoculation --- arc additive manufacture --- 3D metal printing --- ultrafast laser --- Hot Isostatic Pressure --- arc additive manufacturing --- continuous carbon fiber --- performance characteristics --- process-damping --- intermetallic compound (IMC) --- interfaces --- direct metal laser sintering --- porosity --- nickel-based superalloy --- element segregation --- hydrophobicity --- H13 tool steel --- Cu50Zr43Al7 --- metal powders --- parameter optimization --- side spatters --- powder packing --- 3D printing --- precipitates --- n/a --- simulation --- laser cladding deposition --- melt pool size --- quenching rate --- Al–Mg alloy --- tailored properties --- workpiece scale --- fatigue --- laser cladding --- Ti-6Al-4V --- deformation --- quality of the as-built parts --- model --- milling --- wire feeding additive manufacturing --- martensitic transformation --- ball milling --- Inconel 718 --- ablation --- in-process temperature in MPBAM --- subgranular dendrites --- porosity reduction --- femtosecond --- paint bake-hardening --- Al6061 --- defects --- continuous dynamic recrystallization --- wear --- Additive manufacturing --- volumetric heat source --- Ti6Al4V alloy --- AlSi10Mg --- radial grooves --- GH4169 --- temperature and stress fields --- laser powder bed fusion --- metallic glasses --- numerical simulation --- latent heat --- divisional scanning --- wire lateral feeding --- laser powder bed fusion (LPBF) --- heat treatment --- thermal behaviour --- fused filament fabrication --- microstructures --- thermal conductivity --- 12CrNi2 alloy steel powder --- tensile strength --- hot stamping steel blanks --- multi-laser manufacturing --- aluminum alloys --- additive surface structuring --- parts design --- process parameters --- thermal stress analysis --- SLM process parameters --- nickel alloys --- Al–Si --- powder flowability --- laser power absorption --- refractory high-entropy alloy --- localized inductive heating --- mechanical properties --- selective laser melting --- storage energy --- concrete --- mechanical property --- gray cast iron --- constitutive model --- analytical modeling --- hot deformation --- epitaxial growth --- design --- flowability --- amorphous alloy --- PSO-BP neural network algorithm --- molten pool evolution --- microhardness measurement --- macro defects --- thermal capillary effects --- finite element analysis --- dynamic properties --- WxNbMoTa --- properties --- Al-5Si alloy --- Al-Mg-Si alloy --- Al-Mg alloy --- Al-Si


Book
Additive Manufacturing: Alloy Design and Process Innovations.
Authors: ---
ISBN: 3039283537 3039283529 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

microstructure --- slag --- crystallographic texture --- epoxy solder --- additive manufacturing --- substrate preheating --- thermosetting epoxy resin --- AlSi10Mg alloy --- impact --- residual stress --- stability lobe diagram --- laves phase --- vanadium --- selective laser melting (SLM) --- molten pool dynamic behavior --- scanning strategy --- pulse frequency --- thin-walled weak rigidity parts --- scanning --- aluminum --- elastic abrasive --- 2219 aluminum alloy --- Powder bed --- ABS --- laser energy density --- equivalent processing model --- composition --- numerical analysis --- scanning electron microscopy (SEM) --- Hastelloy X alloy --- regular mixing --- texture evolution --- graphene nano-sheets (GNSs) --- Electron Beam Melting --- powder bed fusion --- microstructural evolution --- Mg content --- cement --- bulk metallic glasses --- grain refinement --- Taguchi --- intermediate thermo-mechanical treatment --- valorization --- microstructure and properties --- arc current --- high computational efficiency --- powder properties --- dynamic characteristics --- composite materials --- CuAl2 phase --- rapid solidification --- magnetizer --- M300 mold steel --- circular economy --- titanium alloy --- Al–5Si alloy --- Al–Mg–Si alloy --- ultrasonic bonding --- water absorption --- disc brake --- support strategy --- inoculation --- arc additive manufacture --- 3D metal printing --- ultrafast laser --- Hot Isostatic Pressure --- arc additive manufacturing --- continuous carbon fiber --- performance characteristics --- process-damping --- intermetallic compound (IMC) --- interfaces --- direct metal laser sintering --- porosity --- nickel-based superalloy --- element segregation --- hydrophobicity --- H13 tool steel --- Cu50Zr43Al7 --- metal powders --- parameter optimization --- side spatters --- powder packing --- 3D printing --- precipitates --- n/a --- simulation --- laser cladding deposition --- melt pool size --- quenching rate --- Al–Mg alloy --- tailored properties --- workpiece scale --- fatigue --- laser cladding --- Ti-6Al-4V --- deformation --- quality of the as-built parts --- model --- milling --- wire feeding additive manufacturing --- martensitic transformation --- ball milling --- Inconel 718 --- ablation --- in-process temperature in MPBAM --- subgranular dendrites --- porosity reduction --- femtosecond --- paint bake-hardening --- Al6061 --- defects --- continuous dynamic recrystallization --- wear --- Additive manufacturing --- volumetric heat source --- Ti6Al4V alloy --- AlSi10Mg --- radial grooves --- GH4169 --- temperature and stress fields --- laser powder bed fusion --- metallic glasses --- numerical simulation --- latent heat --- divisional scanning --- wire lateral feeding --- laser powder bed fusion (LPBF) --- heat treatment --- thermal behaviour --- fused filament fabrication --- microstructures --- thermal conductivity --- 12CrNi2 alloy steel powder --- tensile strength --- hot stamping steel blanks --- multi-laser manufacturing --- aluminum alloys --- additive surface structuring --- parts design --- process parameters --- thermal stress analysis --- SLM process parameters --- nickel alloys --- Al–Si --- powder flowability --- laser power absorption --- refractory high-entropy alloy --- localized inductive heating --- mechanical properties --- selective laser melting --- storage energy --- concrete --- mechanical property --- gray cast iron --- constitutive model --- analytical modeling --- hot deformation --- epitaxial growth --- design --- flowability --- amorphous alloy --- PSO-BP neural network algorithm --- molten pool evolution --- microhardness measurement --- macro defects --- thermal capillary effects --- finite element analysis --- dynamic properties --- WxNbMoTa --- properties --- Al-5Si alloy --- Al-Mg-Si alloy --- Al-Mg alloy --- Al-Si


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210173 3039210165 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210130 3039210122 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210157 3039210149 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Fluid Flow in Fractured Porous Media,
Authors: ---
ISBN: 3039214748 303921473X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

deformation feature --- minerals --- microstructure --- mixing --- permeability --- gas concentration --- water–rock interaction --- loose gangue backfill material --- unified pipe-network method --- fracture --- roof-cutting resistance --- crack --- similar-material --- movable fluid --- gob-side entry retaining (GER) --- rock-soil mechanics --- bed separation --- orthogonal tests --- charge separation --- water soaked height --- fluid flow in reclaimed soil --- laboratory experiment --- longwall mining --- grading broken gangue --- MIP --- elastic modulus --- effective stress --- permeability coefficient --- mixer --- naturally fracture --- SEM --- microstructure characteristics --- artificial joint rock --- fractured rock --- strata movement --- conservative solute --- particle velocity --- dry-wet cycles --- hydraulic fractures --- numerical calculation --- mechanical behaviors --- normalized conductivity-influence function --- fractured porous rock mass --- PPCZ --- segmented grouting --- non-aqueous phase liquid --- intelligent torque rheometer --- numerical analysis --- temperature --- unsaturated soil --- uniaxial compressive strength --- mine shaft --- coalbed methane (CBM) --- nonlinear flow in fractured porous media --- similar simulation --- forecasting --- tight sandstones --- oriented perforation --- hydro-mechanical coupling --- constant normal stiffness conditions --- cohesive soils --- layered progressive grouting --- chemical grouts --- grain size of sand --- Darcy’s law --- soft coal masses --- hydro-power --- cyclic heating and cooling --- cohesive element method --- cement-based paste discharge --- tectonically deformed coal --- split grouting --- fault water inrush --- filtration effects --- T-stress --- particle flow modeling --- new cementitious material --- strength --- stabilization --- fractured porous medium --- brine concentration --- initial water contained in sand --- XRD --- fracture criteria --- hydraulic conductivity --- roadway deformation --- backfill mining --- adsorption/desorption properties --- pore pressure --- roughness --- cement–silicate grout --- compressive stress --- discrete element method --- dynamic characteristics --- strain-based percolation model --- thermal-hydrological-chemical interactions --- pore distribution characteristics --- transversely isotropic rocks --- nitric acid modification --- disaster-causing mechanism --- CH4 seepage --- crack distribution characteristics --- micro-CT --- relief excavation --- Darcy flow --- hydraulic fracturing --- mixed-form formulation --- propagation --- scanning electron microscope (SEM) images --- propagation pattern --- consolidation process --- rheological deformation --- gas adsorption --- soft filling medium --- ground pressure --- orthogonal ratio test --- rock fracture --- coal seams --- high-steep slope --- interface --- orthogonal test --- stress interference --- physical and mechanical parameters --- fracture propagation --- fluid–solid coupling theory --- coupling model --- surface characteristics --- numerical manifold method --- gas --- lignite --- water inrush prevention --- coupled THM model --- hard and thick magmatic rocks --- Ordos Basin --- porosity --- damage mechanics --- seepage --- degradation mechanism --- high temperature --- visualization system --- bentonite-sand mixtures --- contamination --- conductivity-influence function --- water-rock interaction --- deterioration --- seepage pressure --- glutenite --- adhesion efficiency --- mechanical behavior transition --- bedding plane orientation --- n/a --- enhanced gas recovery --- debris-resisting barriers --- reinforcement mechanism --- on-site monitoring --- geophysical prospecting --- cyclic wetting-drying --- scoops3D --- semi-analytical solution --- enhanced permeability --- management period --- seepage control --- deformation --- Yellow River Embankment --- impeded drainage boundary --- rheological test --- circular closed reservoir --- grout penetration --- viscoelastic fluid --- coal-like material --- paste-like slurry --- floor failure depth --- supercritical CO2 --- gravel --- numerical model --- fractal --- gas-bearing coal --- shear-flow coupled test --- rheological limit strain --- CO2 flooding --- flotation --- goaf --- slope stability --- damage --- coal and gas outburst --- hydraulic fracture --- anisotropy --- high-order --- effluents --- FLAC --- limestone roof --- sandstone --- TG/DTG --- Xinjiang --- two-phase flow --- model experiment --- coal particle --- volumetric strain --- failure mode --- land reclamation --- sandstone and mudstone particles --- contiguous seams --- CO2 geological storage --- numerical simulation --- geogrid --- stress relief --- optimum proportioning --- roadside backfill body (RBB) --- pervious concrete --- mudstone --- hydraulic fracture network --- grouted sand --- fractal pore characteristics --- refraction law --- segmented rheological model --- ductile failure --- heterogeneity --- flow law --- fracture closure --- coal measures sandstone --- tight sandstone gas reservoirs --- gob behaviors --- water-dripping roadway --- creep characteristics --- internal erosion --- warning levels of fault water inrush --- hydraulic aperture --- bolt support --- discontinuous natural fracture --- microscopic morphology --- critical hydraulic gradient --- mixed mode fracture resistance --- differential settlement --- alternate strata --- finite element method --- crushing ratio --- chloride --- glauberite cavern for storing oil &amp --- macroscopic mechanical behaviors --- collision angle --- adsorption performance --- failure mechanism --- mechanical properties --- transmissivity --- damage evolution --- gas fracturing --- multitude parameters --- deviatoric stress --- Jiaohe --- coal --- soil properties --- acoustic emission --- pore structure --- grouting experiment --- concrete --- confining pressures --- green mining --- gas drainage --- fluid viscosity --- compression deformation --- Unsaturation --- adsorption–desorption --- seepage-creep --- constitutive model --- soil particle size --- Pseudo Steady-State (PPS) constant --- soil–structure interface --- debris flow --- fracture grouting --- initial settlement position --- regression equation --- electrical potential --- secondary fracture --- surrounding rock --- solid backfill coal mining --- time variation --- excess pore-pressures --- finite-conductivity fracture --- permeability characteristics --- rainfall-unstable soil coupling mechanism(R-USCM) --- shaft lining --- Darcy's law --- cement-silicate grout --- fluid-solid coupling theory --- adsorption-desorption --- soil-structure interface

Listing 1 - 10 of 11 << page
of 2
>>
Sort by