Narrow your search

Library

FARO (10)

KU Leuven (10)

LUCA School of Arts (10)

Odisee (10)

Thomas More Kempen (10)

Thomas More Mechelen (10)

UCLL (10)

VIVES (10)

Vlaams Parlement (10)

UGent (2)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2022 (1)

2021 (5)

2020 (2)

2019 (2)

Listing 1 - 10 of 10
Sort by

Book
Abiotic Stress Effects on Performance of Horticultural Crops
Authors: ---
ISBN: 3039217518 303921750X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Horticultural crop yield and quality depend on genotype, environmental conditions, and production management. In particular, adverse environmental conditions may greatly affect crop performance, reducing crop yield by 50%–70%. Abiotic stresses such as cold, heat, drought, flooding, salinity, nutrient deficiency, and ultraviolet radiation affect multiple physiological and biochemical mechanisms in plants as they attempt to cope with the stress conditions. However, different crop species can have different sensitivities or tolerances to specific abiotic stresses. Tolerant plants may activate different strategies to adapt to or avoid the negative effect of abiotic stresses. At the physiological level, photosynthetic activity and light-use efficiency of plants may be modulated to enhance tolerance against the stress. At the biochemical level, several antioxidant systems may be activated, and many enzymes may produce stress-related metabolites to help avoid cellular damage, including compounds such as proline, glycine betaine, and amino acids. Within each crop species there is a wide variability of tolerance to abiotic stresses, and some wild relatives may carry useful traits for enhancing the tolerance to abiotic stresses in their progeny through either traditional or biotechnological breeding. The research papers and reviews presented in this book provide an update of the scientific knowledge of crop interactions with abiotic stresses.


Book
Climate Change and Air Pollution Effects on Forest Ecosystems
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Both climate change and air pollution have large negative impacts on physiological processes and functions at the individual tree level and on whole forest ecosystems. The objective of climate change and air quality monitoring is to make decisions, based on scientific knowledge, regarding how to best manage and improve the current state of the environment. Our ability to take urgent measures to combat climate change and its impact on forest ecosystems and conserve forest biodiversity depends upon our knowledge of the latest scientific results on the status of forest ecosystems. Unfortunately, there are a lot of gaps in our knowledge of the detection and monitoring of their effects on forest ecosystems. This book presents relevant results from scientific research in the fields of climate change, air pollution, forest conservation, protection and monitoring that can contribute to a better science–policy interaction and to the elaboration of specific strategies, in accordance with the areas of forest sciences from IUFRO RG 8.04.00 - Impacts of air pollution and climate change on forest ecosystems.


Book
Agricultural Water Conservation: Tools, Strategies, and Practices
Author:
Year: 2021 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water scarcity is a critical issue for agriculture, and, hence, efficient management and conservation practices for agricultural water use are essential for adapting to and mitigating the impacts of current and future discrepancy between water supplies and water demands. This Special Issue focuses on “Agricultural Water Conservation: Tools, Strategies, and Practices”, which aims to bring together a collection of recent cutting-edge research and advancements in agricultural water conservation. The Special Issue intends to give a broad overview focusing on on-farm water conservation practices, advanced irrigation tools and water technologies, and the best management practices and strategies for efficient water use in agriculture.

Keywords

Research. --- Biology. --- Technology. --- Engineering. --- Agriculture. --- irrigation --- groundwater --- alluvial aquifer --- water conservation adoption --- row crops --- Mississippi Delta --- precision agriculture --- Lower Mississippi River Valley --- clogging --- drip irrigation --- emitter --- hydrocyclone --- digestate liquid fraction --- wastewater --- salinity --- environments --- AquaCrop model --- water productivity --- scenarios --- tolerant --- Colorado River Basin --- drought --- irrigation management strategy --- water deficit --- optimum water use --- forage --- BEARS --- bushland --- climate --- evapotranspiration --- groundwater management --- irrigation water management --- Ogallala aquifer region --- remote sensing --- lysimeter ET assessment --- water-use efficiency --- analytical formula --- efficient design --- application efficiency --- gravity irrigation --- solar MajiPump --- water and crop productivity --- small-scale irrigation --- conservation agriculture --- Ethiopia --- sensible and latent heat fluxes --- surface renewal method --- tea plantation --- eddy covariance --- squash --- partial root drying --- water use efficiency --- soil mulch --- growing seasons --- gas exchange --- fruit quality --- Asparagus officinalis L. --- cultivars --- spears yield --- sandy soil --- water requirements --- IWUE --- autonomous landscape irrigation --- Hargreaves and Samani evapotranspiration model --- water conservation --- smart controller --- n/a


Book
Grafting as a Sustainable Means for Securing Yield Stability and Quality in Vegetable Crops
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vegetable growers around the world only collect, on average, half of the yield they would obtain under optimal conditions, known as yield potential. It is estimated that 60–70% of the yield gap is attributable to abiotic factors such as salinity, drought, suboptimal temperatures, nutritional deficiencies, flooding, waterlogging, heavy metals contamination, adverse soil pH and organic pollutants, while the remaining 30–40% is due to biotic factors, especially soilborne pathogens, foliar pathogens, arthropods and weeds. Under climate change forecasts, the pressure of biotic/abiotic stressors on yield is expected to rise and challenge further global food security. To meet global demand, several solutions have been proposed, focusing on the breeding of varieties with greater yield potential, but this one-size-fits-all solution leads to limited benefits. In order to overcome the current situation, grafting of elite scion varieties onto vigorous rootstock varieties has been suggested as one of the most promising drives towards further yield stability. Specifically, the implementation of suitable rootstock × scion × environment combinations in Solanaceous (tomato, eggplant, pepper) and Cucurbitaceous (melon, watermelon, melon) high-value crops represents an untapped opportunity to secure yield stability and reliability under biotic/abiotic stresses. This Special Issue invites Original Research, Technology Reports, Methods, Opinions, Perspectives, Invited Reviews and Mini Reviews dissecting grafting as a sustainable agro technology for enhancing tolerance to abiotic stresses and reducing disease damage. In addition, the following are of interest: potential contributions dealing with genetic resources for rootstock breeding, practices and technologies of rootstock breeding, and rootstock–scion signaling, as well as the physiological and molecular mechanisms underlying graft compatibility. In addition, the effect of grafting on vegetable quality, practical applications and nursery management of grafted seedlings and specialty crops (e.g. artichoke and bean) will be considered within the general scope of the Special Issue. We highly believe that this compilation of high standard scientific papers on the principles and practices of vegetable grafting will foster discussions within this important field.

Keywords

tomato grafting --- splice grafting technique --- graft angle --- random diameter --- wild eggplant relative --- interspecific hybrid --- scion/rootstock combination --- plant vigour --- yield --- fruit quality attributes --- cucumber --- grafting techniques --- rootstock-scion --- soil-borne disease --- resistant --- tolerant crop growth --- fruit yield --- fruit quality --- LED --- PPFD --- PsaA --- PsbA --- Western Blot --- Cucumis melo L. --- arsenic --- grafting --- translocation --- bioaccumulation --- agricultural robot --- automated grafting --- agricultural machinery --- Tomato grafting --- salinity tolerance --- rootstock --- physio-biochemical mechanisms --- Solanum lycopresicum L. --- vegetable grafting --- Solanum melongena L. --- grafting combinations --- arbuscular micorrhizal fungi --- yield traits --- NUE --- mineral profile --- functional properties --- NaCl --- Citrullus vulgaris Schrad --- Luffa cylindrica Mill --- C. maxima Duch. × C. moschata Duch. --- seedlings --- morpho-physiological traits --- solanaceae --- cucurbitaceae --- defense mechanisms --- soilborne pathogen --- genetic resistance --- microbial communities --- soil/root interface --- reduced irrigation --- rootstocks --- leaf gas exchange --- Citrullus lanatus (Thunb) Matsum and Nakai --- functional quality --- lycopene --- storage --- sugars --- texture --- eggplant grafting --- sensory evaluation --- Brassicaceae --- growth --- mineral content --- photosynthesis --- taproot --- n/a


Book
Plant Responses to Hypoxia
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far.

Keywords

ethylene --- Ein2 --- germination --- RbohD --- submergence --- hypoxia --- post-submergence recovery --- legumes --- plant water relations --- shoot to root ratio --- Lotus japonicus --- leaf greenness --- leaf desiccation --- stomatal conductance --- aerenchyma --- auxin --- rice (Oryza sativa) --- root --- waterlogging --- leaf gas exchange --- waterlogging tolerance --- organic compound --- plant growth --- Physalis peruviana L. --- anaerobiosis --- anoxia --- Arabidopsis --- flooding --- rice --- development --- apoplastic barrier --- barrier to radial oxygen loss (ROL) --- lignin --- Oryza glumaepatula --- O. rufipogon --- rice (O. sativa) --- suberin --- wild rice --- acetolactate synthase --- ethanol fermentation --- imidazolinones --- mode of action --- aerobic fermentation --- Oryza sativa --- Submergence --- Activity of antioxidant enzymes --- Chlorophyll content --- phytoglobin --- VII Ethylene Response Factor --- PRT6 N-degron pathway of proteolysis --- Solanum tuberosum --- Solanum lycopersicum --- Solanum dulcamara --- coleoptile --- root hypoxia --- oxygen sensing --- jasmonate --- root meristem --- abiotic stress --- RNA-seq --- transcription factor --- fruit trees --- Prunus --- hypertrophied lenticels --- anaerobic fermentation --- energy metabolism --- root respiration --- anoxic signaling --- potassium --- pH --- acidification --- fluorescence microscopy --- Triticum aestivum --- direct seeding --- anaerobic germination --- low O2 stress --- regulatory mechanism --- metabolic adaptation --- drought --- alternated stress --- maize --- teosinte --- microRNAs --- metabolomics --- phloem --- n/a


Book
Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Green, Red and Flowering Plants
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants, including vegetables, are an essential element of the human diet, considering their dense nutritional content and bioactive content that could assist in boosting nutritional quality and food security. Plants are exhibiting a colossal rebound in the context of healthier lifestyles, especially as functional foods empowered with bioactive phytochemicals; they synthesize uncountable “ecochemicals” via secondary metabolism, which command medical and socioeconomic significance. Among these secondary metabolites, phenolic compounds are of prime interest and are largely present in medicinal plants, herbs, vegetables, and flowers. These metabolites are at the helm of the bitterness, color, and scent of plants, and are correlated to the beneficial health qualities expressed by the antioxidant capacity. The accretion of these health-promoting phytochemicals depends chiefly on the genetic material and the maturity stage at harvest, notwithstanding the main role that is played by preharvest factors, i.e., eustress, fertilization, irrigation, light, biostimulants, biofortification, and other agronomic practices. This Special Issue is a collection of 11 original research articles addressing the quality of seeds, microgreens, leafy vegetables, herbs, flowers, berries, fruits, and byproducts. Mainly preharvest factors were assessed regarding their effect on the qualitative aspects of the aforementioned plants.


Book
Physiological Responses to Abiotic and Biotic Stress in Forest Trees
Authors: ---
ISBN: 3039215159 3039215140 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level.

Keywords

pure stands --- n/a --- ion relation --- Heterobasidion annosum --- salicylic acid --- antioxidant enzymes --- antioxidant activity --- Luquasorb --- intrinsic water-use efficiency --- Greece --- Pinus koraiensis Sieb. et Zucc. --- ion homeostasis --- photosynthesis --- Pinus massoniana --- Stockosorb --- water relations --- Norway spruce --- rubber tree --- hydrophilic polymers --- drought stress --- ion relationships --- Carpinus betulus --- tree rings --- N nutrition --- disturbance --- Populus simonii Carr. (poplar) --- infection --- subcellular localization --- basal area increment --- mixed stands --- photosynthetic responses --- Aleppo pine --- water potential --- elevation gradient --- living cell --- physiological response --- antioxidant enzyme activity --- ion contents --- signal network --- expression --- soil N --- GA-signaling pathway --- differentially expressed genes --- Ca2+ signal --- climate --- ecophysiology --- Robinia pseudoacacia L. --- Heterobasidion parviporum --- mid-term --- plant tolerance --- canopy conductance --- DELLA --- tapping panel dryness --- osmotic adjustment substances --- abiotic stress --- wood formation --- malondialdehyde --- salinity treatments --- organic osmolytes --- bamboo forest --- non-structural carbohydrate --- Abies alba Mill. --- tree --- salt stress --- Populus euphratica --- proline --- nutrition --- Carpinus turczaninowii --- plasma membrane Ca2+ channels --- gene regulation --- pathogen --- TCP --- forest type --- functional analysis --- Fraxinus mandshurica Rupr. --- long-term drought --- defense response --- cold stress --- silicon fertilization --- gas exchange --- Fagus sylvatica L. --- glutaredoxin --- water availability --- 24-epiBL application --- Konjac glucomannan --- leaf properties --- reactive oxygen species --- sap flow --- ?13C --- salinity --- morphological indices --- chloroplast ultrastructure --- Moso Bamboo (Phyllostachys edulis) --- drought --- soluble sugar --- molecular cloning --- starch --- growth


Book
Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Keywords

silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS


Book
Herbaceous Field Crops Cultivation
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Herbaceous field crops include several hundred plant species worldly widespread for different end-uses, from food to no-food applications. Among them are included cereals, grain legumes, sugar beet, potato, cotton, tobacco, sunflower, safflower, rape, flax, soybean, alfalfa, clover spp. and other fodder crops, but only 15–20 species play a relevant role for the worldly global economy. Nowadays, to meet the food demand of the ever-increasing world population in a scenario of decreased arable lands, the development of holistic agricultural management approaches to boost contemporaneously yield and quality of herbaceous field crops is essential. Accordingly, this book represents an up-to-date collection of the current understanding of the impact of several agricultural management factors (i.e., genetic selection, planting density and arrangement, fertilization, irrigation, weed control and harvest time) on the yield and qualitative performances of 11 field crops (wheat, cardoon, potato, clary sage, basil, sugarcane, canola, cotton, tomato, lettuce and hemp). On the whole, the topics covered in this book will ensure students and academic readers, such as plant physiologists, environmental scientists, biotechnologists, botanists, soil chemists and agronomists, to get the information about the recent research advances on the eco-sustainable management cultivation of herbaceous field crops, with a particular focus on varietal development, soil nutrient and water management, weed control, etc.

Keywords

planting density --- fertilization --- the central composite design --- fiber yield --- analog optimization --- potato --- nitrogen fertilization --- environmental sustainability --- cost-effective --- nitrogen use efficiency --- tuber yield --- EONFR --- growth --- specific leaf nitrogen --- critical nitrogen uptake --- cotton --- dry matter yield --- root growth --- root physiology --- water productivity --- nitrogen productivity --- drip irrigation quota --- lint yield --- biomass --- leaf chlorophyll fluorescence --- leaf gas exchange --- leaf structure --- drought tolerance --- dry weight yield --- essential oil content --- leaf area index --- Ocimum basilicum --- potassium --- fertilizer --- biomass accumulation --- fiber quality --- organic farming system --- yield --- pH --- soluble solid content --- Bostwick viscosity --- phosphorus sensitivity --- phosphorus --- reproductive organ biomass --- nutrients accumulation --- plant density --- nitrogen fertilization rate --- photosynthesis rate --- SPAD readings --- nitrogen efficiency indices --- tuber nutritional composition --- cereal crops --- plant water extracts --- bioherbicides --- weed management --- allelopathy --- dual purpose canola --- nitrogen fertilizer --- oil content --- grazing --- sustainable agriculture --- integrated weed management --- yield losses --- preventive weed control --- mechanical weed control --- physical weed control --- biological weed control --- herbicides --- hybrids --- wheat --- weeds --- competition --- genetic gain --- genomic selection --- quantitative genetics --- sugarcane breeding --- pit plantation --- planting patterns --- ratoon crop --- sowing techniques --- sugarcane yield --- quality --- seasonal variation --- fatty acids --- free sugars --- chemical composition --- Cynara cardunculus L. --- cardoon --- organic acids --- clary sage --- essential oil --- aromatic plant species --- biometric and agronomic characteristics --- arbuscular mycorrhizal fungi --- organic farming --- calcareous soils --- crop physiology --- sustainability --- diatomaceous earth --- monosilicic acid --- Si application method --- soil water conditions --- wheat cultivar --- tocopherols --- lipidic fraction --- companion plants --- N-fertilization --- partial land equivalent ratio (PLER) --- weed control --- grain quality --- productivity --- n/a


Book
Genetic and Morphological Variation in Tropical and Temperate Plant Species
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants provide the foundation for the structure and function, as well as interactions, among organisms in both tropical and temperate zone habitats. To date, many investigations have revealed patterns and mechanisms generating plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Investigations of plants in both little-disturbed, more natural environments, as well as in urban areas in which crucial green infrastructure is ever more important for sustaining complex human societies are needed. This Special Issue of Forests will focus on plant variation from the perspectives of morphology, genetics, and function, especially plant interactions with biotic and abiotic factors. Research articles may address any aspect of plant evolution and community phylogenetics (explorations of patterns and mechanisms from diverse organismal levels, e.g., molecular, population, species, community, landscape, and ecosystem), plant functional traits (e.g., nutrient traits of leaf, stem, root; reproductive traits of flower, fruit, seed), and/or responses of plant species to changing environments (e.g., water, atmosphere, soil, human activities). Studies providing quantitative evaluation or description of interactions of plants with animals and microbes, both in natural and urban environments, including terrestrial and aquatic systems, are also welcome.

Keywords

Hevea brasiliensis Müll. Arg. --- HbMad-box genes --- conserved domains --- gene structures --- expression profiles --- stress treatments --- microsatellite locus --- Hardy-Weinberg equilibrium --- genetic differentiation --- breeding population --- artificial selection --- Aegle marmelos (L.) Corr. --- transcripts --- transcriptome assembly --- simple sequence repeats --- transcription factors --- cytochrome p450 --- glycotransferases --- metabolic pathway --- grafting --- pecan --- miRNA --- graft union --- sequencing --- edible forest product --- forest biology --- macro-fungi --- non-timber forest products (NTFPs) --- Pan-Pearl River Delta --- allometry --- anatomy --- Polygonatum odoratum --- Polygonatum multiflorum --- shape --- shoot --- endophytes --- medicinal plants --- pathogen --- molecular identification --- plant-microbe interaction --- gas exchange --- chlorophyll fluorescence --- growth trait --- genetic variation --- early selection --- pedunculate oak --- drought --- stress --- memory --- flushing --- autumn leaf senescence --- phenological shift --- carry-over effect --- mangroves --- DNA barcoding --- species identification --- phylogenetic relation --- moso bamboo --- heat shock factor gene --- abiotic stresses --- co-expression --- yellow-green leaf mutant --- transcriptome --- antenna protein --- photosynthesis --- birch --- Dalbergia odorifera T. Chen --- genetic diversity --- population structure --- EST-SSR marker --- microsatellite marker --- rosewood --- conservation --- Pinus massoniana --- introgression hybrid --- RNA sequencing --- DEGs --- reproduction --- phenology --- leafing out --- flowering --- senescence --- cumulative logistic regression --- hawthorn --- provenance trial --- non-local populations --- variance analysis --- lime application --- understory removal --- microbial community --- forest management --- Eucalyptus --- protogyny (PG) --- protandry (PA) --- pollen viability --- seed success --- polyploidy --- phosphate solubilizing bacteria --- nutrition --- oil tea --- Lagerstroemia species --- simple sequence repeat markers --- bulked segregant analysis --- creeping trait --- plant architecture --- climate change --- forest biodiversity --- plant–environment interactions --- plant traits --- urbanization

Listing 1 - 10 of 10
Sort by