Narrow your search

Library

FARO (10)

KU Leuven (10)

LUCA School of Arts (10)

Odisee (10)

Thomas More Kempen (10)

Thomas More Mechelen (10)

UCLL (10)

VIVES (10)

Vlaams Parlement (10)

UGent (2)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2022 (6)

2021 (3)

2019 (1)

Listing 1 - 10 of 10
Sort by

Book
Computational Fluid Dynamics 2020
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner.

Keywords

homogeneous-heterogeneous reactions --- porous medium --- first slip --- second slip --- exact solution --- fluid structure-interaction --- vibration suppression --- entropy generation minimization --- sloshing --- damping factor --- porous slider --- MHD flow --- reynolds number --- velocity slip --- homotopy analysis method --- Casson nanoliquid --- Marangoni convection --- inclined MHD --- Joule heating --- heat source --- third-grade liquid --- heat generation/absorption --- stretched cylinder --- series solution --- slip effects --- mixed convection flow --- cross fluid --- Darcy–Forchheimer model --- successive local linearization method --- swimming gyrotactic microorganisms --- Darcy law --- nanofluid --- unsteady flow --- non-axisymmetric flow --- MHD --- hybrid nanofluid --- stagnation-point flow --- ferrofluid --- Lie group framework --- unsteady slip flow --- stretching surface --- thermal radiation --- lattice Boltzmann method --- smoothed profile method --- hybrid method --- natural convection simulation --- concentric hexagonal annulus --- CMC-water --- Casson fluid --- mixed convection --- solid sphere --- scaling group analysis --- Sutterby fluid --- magnetohydrodynamics (MHD) --- stability analysis --- entropy --- nanoliquid --- moving wall --- unsteady stagnation point --- convective boundary condition --- Hyperloop system --- transonic speed --- aerodynamic drag --- drag coefficient --- pressure wave --- shockwave --- nanofluids --- heat generation --- sphere --- plume --- finite difference method --- gas turbine --- damaged rotor blade --- leading-edge modification --- aerodynamic characteristics --- micropolar hybrid nanofluid --- dual solution --- stretching/shrinking sheet --- Sisko fluid flow --- gold particles --- radiation effect --- slip effect --- curved surface --- Reiner-Rivlin nanofluid --- circular plates --- induced magnetic effects --- activation energy --- bioconvection nanofluid --- steady flow --- Tiwari and Das model --- Prandtl-Eyring nanofluid --- entropy generation --- implicit finite difference method


Book
Modeling and Simulation in Engineering
Authors: ---
ISBN: 303655940X 3036559396 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue Modeling and Simulation in Engineering, belonging to the section Engineering Mathematics of the Journal Mathematics, publishes original research papers dealing with advanced simulation and modeling techniques. The present book, “Modeling and Simulation in Engineering I, 2022”, contains 14 papers accepted after peer review by recognized specialists in the field. The papers address different topics occurring in engineering, such as ferrofluid transport in magnetic fields, non-fractal signal analysis, fractional derivatives, applications of swarm algorithms and evolutionary algorithms (genetic algorithms), inverse methods for inverse problems, numerical analysis of heat and mass transfer, numerical solutions for fractional differential equations, Kriging modelling, theory of the modelling methodology, and artificial neural networks for fault diagnosis in electric circuits. It is hoped that the papers selected for this issue will attract a significant audience in the scientific community and will further stimulate research involving modelling and simulation in mathematical physics and in engineering.


Book
Fluid Interfaces
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field.

Keywords

polyelectrolyte --- surfactants --- kinetically trapped aggregates --- interfaces --- surface tension --- interfacial dilational rheology --- adsorption --- nonlinear stretching sheet --- viscoelastic fluid --- MHD --- viscous dissipation --- underwater vehicle --- sea-water pump --- vibration isolation --- flexible pipes --- cationic surfactants --- Gemini 12-2-12 surfactant --- dynamic surface tension --- maximum bubble pressure --- surface potential --- nanofluid --- stretching surface --- rotating fluid --- Homotopy Analysis Method (HAM) --- porous media --- magnetohydrodynamics --- hybrid nanofluid --- stretching cylinder --- flow characteristics --- nanoparticles --- convective heat transfer --- interfacial tensions --- dilational rheology --- biocompatible emulsions --- partition coefficient --- Tween 80 --- saponin --- citronellol glucoside --- MCT oil --- Miglyol 812N --- lipids --- pollutants --- Langmuir monolayers --- particles --- rheology --- neutron reflectometry --- ellipsometry --- DPPC --- lipid monolayers --- air/water interface --- entropy --- second grade nanofluid --- Cattaneo-Christov heat flux model --- nonlinear thermal radiation --- Joule heating --- fluid displacement --- inverse Saffman–Taylor instability --- partially miscible --- Korteweg force --- gyrotactic microorganisms --- micropolar magnetohydrodynamics (MHD) --- Maxwell nanofluid --- single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) --- thermal radiation --- chemical reaction --- mixed convection --- permeability --- confinement --- dynamics --- materials --- applications


Book
Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of the research articles and review article, published in special issue "Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application".


Book
Heat Transfer in Engineering
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advancements in research related to heat transfer has gathered much attention in recent decades following the quest for efficient thermal systems, interdisciplinary studies involving heat transfer, and energy research. Heat transfer, a fundamental transport phenomenon, has been considered one of the critical aspects for the development and advancement of many modern applications, including cooling, thermal systems which contain symmetry analysis, energy conservation and storage, and symmetry-preserving discretization of heat transfer in a complex turbulent flow. The objective of this book is to present recent advances, as well as up-to-date progress in all areas of heat transfer in engineering and its influence on emerging technologies.


Book
Applied Mathematics and Computational Physics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications.

Keywords

radial basis functions --- finite difference methods --- traveling waves --- non-uniform grids --- chaotic oscillator --- one-step method --- multi-step method --- computer arithmetic --- FPGA --- high strain rate impact --- modeling and simulation --- smoothed particle hydrodynamics --- finite element analysis --- hybrid nanofluid --- heat transfer --- non-isothermal --- shrinking surface --- MHD --- radiation --- multilayer perceptrons --- quaternion neural networks --- metaheuristic optimization --- genetic algorithms --- micropolar fluid --- constricted channel --- MHD pulsatile flow --- strouhal number --- flow pulsation parameter --- multiple integral finite volume method --- finite difference method --- Rosenau-KdV --- conservation --- solvability --- convergence --- transmission electron microscopy (TEM) --- convolutional neural networks (CNN) --- anomaly detection --- principal component analysis (PCA) --- machine learning --- deep learning --- neural networks --- Gallium-Arsenide (GaAs) --- radiation-based flowmeter --- two-phase flow --- feature extraction --- artificial intelligence --- time domain --- Boltzmann equation --- collision integral --- convolutional neural network --- annular regime --- scale layer-independent --- petroleum pipeline --- volume fraction --- dual energy technique --- prescribed heat flux --- similarity solutions --- dual solutions --- stability analysis --- RBF-FD --- node sampling --- lebesgue constant --- complex regions --- finite-difference methods --- data assimilation --- model order reduction --- finite elements analysis --- high dimensional data --- welding


Book
Non-Newtonian Microfluidics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses.

Keywords

microfluidics --- Janus droplet --- OpenFOAM --- volume of fluid method --- adaptive dynamic mesh refinement --- shear-thinning fluid --- electroosmosis --- elastic instability --- non-Newtonian fluid --- Oldroyd-B model --- electroosmotic flow --- micromixing performance --- heterogeneous surface potential --- wall obstacle --- power-law fluid --- bvp4c --- RK4 technique --- brownian motion --- porous rotating disk --- maxwell nanofluid --- thermally radiative fluid --- von karman transformation --- hybrid nanofluid --- entropy generation --- induced magnetic field --- convective boundary conditions --- thermal radiations --- stretching disk --- viscoelastic material --- group similarity analysis --- thermal relaxation time --- parametric investigation --- variable magnetic field --- error analysis --- viscoelastic fluid --- microfluid --- direction-dependent --- viscous dissipation --- chemical reaction --- finite element procedure --- hybrid nanoparticles --- heat and mass transfer rates --- joule heating --- tri-hybrid nanoparticles --- Soret and Dufour effect --- boundary layer analysis --- finite element scheme --- heat generation --- constructive and destructive chemical reaction --- particle separation --- viscoelastic flow --- inertial focusing --- spiral channel --- transient two-layer flow --- power-law nanofluid --- heat transfer --- Laplace transform --- nanoparticle volume fraction --- effective thermal conductivity --- fractal scaling --- Monte Carlo --- porous media --- power-law model --- bioheat equation --- human body --- droplet deformation --- viscoelasticity --- wettable surface --- dielectric field --- droplet migration --- wettability gradient --- n/a


Book
Selected Problems in Fluid Flow and Heat Transfer
Author:
ISBN: 3039214284 3039214276 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.

Keywords

n/a --- thermal performance --- microbubble pump --- particle deposition --- flow oscillation --- orthogonal jet --- flat plate --- gas turbine engine --- air heater --- flow behavior --- transonic compressor --- friction factor --- nonlinear thermal radiation --- oscillators --- porous cavity --- POD --- turbulent flow --- thermosyphon --- turbulence --- mass transfer --- tip leakage flow --- capture efficiency --- pipe flow --- correlation --- decomposition dimensionalities --- heat transfer --- pressure loss --- CANDU-6 --- numerical modeling --- CFD --- magnetic field --- boundary layer --- two-phase flow --- heat transfer performance --- Colebrook-White --- computational burden --- phase change --- surrogate model --- Padé polynomials --- traveling-wave heat engine --- flow regime --- numerical simulation --- energetics --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- pumps --- BEM --- SPIV --- acoustic streaming --- microbubbles --- Aspen® --- push-pull --- Positive Temperature Coefficient (PTC) elements --- iterative procedure --- transient analysis --- spiral fin-tube --- toxic gases --- unsteady heat release rate --- water hammer --- method of moment --- visualization --- superheated steam --- impingement heat transfer enhancement --- X-ray microtomography --- moderator --- wind turbine --- flow rate --- fin-tube --- flue gas --- actuator disc --- temperature distributions --- supercritical LNG --- sharp sections --- moment of inertia --- Colebrook equation --- pump efficiency --- tower --- OpenFOAM --- computational fluid dynamics --- chemical reaction --- pump performance --- logarithms --- numerical results --- downwind --- thermodynamic --- triaxial stress --- flow friction --- energy conversion --- entropy generation --- zigzag type --- inertance-compliance --- section aspect ratios --- laminar separation bubble --- axial piston pumps --- thermogravimetry --- pressure drop --- load resistances --- vortex breakdown --- T-section prism --- flow-induced motion --- centrifugal pump --- load --- vortex identification --- decomposition region --- condensation --- performance characteristics --- pipes --- detached-eddy simulation --- Computational Fluid Dynamics (CFD) simulation --- thermal cracking --- real vehicle experiments --- bubble size --- thermal energy recovery --- hydraulic resistances --- concentration --- tower shadow --- fire-spreading characteristics --- thermoacoustic electricity generator --- bubble generation --- multi-stage --- thermal effect --- ferrofluid --- PHWR --- fluidics --- multiphase flow --- printed circuit heat exchanger --- particle counter --- dew point temperature --- Padé polynomials


Book
Recent Trends in Coatings and Thin Film–Modeling and Application
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Keywords

Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics


Book
Applications of Mathematical Models in Engineering
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools.

Keywords

fractional order IMC --- first order plus dead-time processes --- event-based implementation --- numerical simulations --- comparative closed loop results --- nonlinear wave phenomen --- RBF --- local RBF-FD --- stability --- unmanned aerial vehicle (UAV) --- quaternion-based estimator --- low-cost design --- automatic optical inspection --- kinetic theory --- parallel robots --- robust control --- sliding mode control --- basinI --- basinII --- mean pressure head --- pressure head with different probabilities of occurrence --- standard deviation of the pressure fluctuations --- statistical modeling --- USBR --- desalination --- humidification-dehumidification --- waste heat recovery --- mathematical model --- yearly analysis --- thermo-economics --- multi-objective optimization --- cruise altitude --- fuel consumption --- time to climb --- Hermite-Simpson method --- trajectory optimization --- terminal residual analysis (TRA) --- m-σ terminal residual analysis (m-σ TRA) --- power transformer --- stray losses --- analytical methods --- finite element method --- gridshell structures --- shape ratio --- length ratio --- regularity --- particle swarm optimization --- genetic algorithm --- hybrid nanofluid --- dual solutions --- mixed convection --- stagnation point --- radiation --- stability analysis --- machine learning --- eXterme Gradient Boosting --- Computation Fluid Dynamics --- blade vibration --- unsteady aerodynamic model --- active disturbance rejection control (ADRC) --- multiobjective optimization --- time delay systems --- tuning rules --- soft robotics --- fractional calculus --- CACSD toolbox --- operating point linearization --- automatic uncertainty bound computation --- Model-in-the-Loop simulation --- hybrid simulation --- ℋ∞ control --- μ synthesis --- DC-to-DC power converters --- buck --- boost --- SEPIC --- rainfall-runoff model --- curve number --- inferential statistics --- 3D runoff difference model --- model calibration --- PAT model --- modified affinity laws --- hydraulic simulation tool --- μ-synthesis --- fractional-order control --- swarm optimization --- artificial bee colony optimization --- CNC machine --- mixed sensitivity --- D–K iteration --- Linear Matrix Inequality --- biotechnology --- fermentation process --- batch bioreactors --- modeling --- control system design and synthesis --- linear control --- adaptive control --- model reference adaptive control --- control system realization --- mixed-sensitivity --- FO-PID --- twin rotor aerodynamic system

Listing 1 - 10 of 10
Sort by