Narrow your search
Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Handbook for Integrated Soil Fertility Management
Author:
Year: 2012 Publisher: CABI

Loading...
Export citation

Choose an application

Bookmark

Abstract

This ISFM handbook is organized into seven sections that include: an introduction, the need for ISFM, the principles of ISFM, soil fertility management practices, targeting ISFM options, an introduction to soil and crop production and a section containing tables, definitions and reference information. The entire project team that includes the TAG hopes that the reader finds this handbook a useful tool for tackling soil fertility and management on the continent and elsewhere where similar factors of production are at play.


Periodical
Pizhūhishhā-yi zirāʻī-i Īrān
Author:
ISSN: 20081472 24233978 Year: 1392 Publisher: Mashad : Dānishgāh-i Firdawsī-i Mashhad,


Book
Wheat Improvement : Food Security in a Changing Climate
Authors: ---
ISBN: 3030906736 3030906728 Year: 2022 Publisher: Cham Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This open-access textbook provides a comprehensive, up-to-date guide for students and practitioners wishing to access in a single volume the key disciplines and principles of wheat breeding. Wheat is a cornerstone of food security: it is the most widely grown of any crop and provides 20% of all human calories and protein. The authorship of this book includes world class researchers and breeders whose expertise spans cutting-edge academic science all the way to impacts in farmers’ fields. The book’s themes and authors were selected to provide a didactic work that considers the background to wheat improvement, current mainstream breeding approaches, and translational research and avant garde technologies that enable new breakthroughs in science to impact productivity. While the volume provides an overview for professionals interested in wheat, many of the ideas and methods presented are equally relevant to small grain cereals and crop improvement in general. The book is affordable, and because it is open access, can be readily shared and translated -- in whole or in part -- to university classes, members of breeding teams (from directors to technicians), conference participants, extension agents and farmers. Given the challenges currently faced by academia, industry and national wheat programs to produce higher crop yields --- often with less inputs and under increasingly harsher climates -- this volume is a timely addition to their toolkit.


Book
Digging deeper : inside Africa's agricultural, food and nutrition dynamics
Authors: --- --- ---
ISBN: 9789004282681 9789004282698 9004282696 9004282688 1322309868 Year: 2014 Publisher: Leiden : The Netherlands : Brill, Printforce,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume attempts to dig deeper into what is currently happening in Africa's agricultural and rural sector and to convince policymakers and others that it is important to look at the current African rural dynamics in ways that connect metropolitan demands for food with value chain improvements and agro-food cluster innovations. It is essential to go beyond a 'development bureaucracy' and a state-based approach to rural transformation, such as the one that often dominates policy debate in African government circles, organizations like the African Union and the UN, and donor agencies.


Book
Water Management for Sustainable Food Production
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The agricultural community is face with the challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, climate variability, and decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a Special Issue on “Water Management for Sustainable Food Production” was assembled. This Special Issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, fertilization, environmental and socio-economic impacts, and irrigation water quality. The articles in the Special Issue cover several water-related issues across the U.S., Asia, Middle East, Africa, and Pakistan concerning sustainable food production. The articles in this Special Issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.

Keywords

AquaCrop model --- capillary rise --- climate change --- rainfall variability --- supplemental irrigation --- crop growth --- lettuce --- AquaCrop --- water saving --- water productivity --- deficit irrigation --- nitrogen productivity --- fertigation --- drip irrigation --- low-discharge --- arid regions --- Africa --- food security --- system of rice intensification --- water conservation --- climate variability --- water use efficiency --- multi-crop production --- pressure irrigation systems --- water costs --- corn --- soybeans --- maize --- crop-water production function --- West Africa --- spatiotemporal rainfall variability --- tied ridges --- scattered plots --- pearl millet --- yield loss --- crop uptake --- food quality --- geogenic --- emerging contaminants --- nanomaterials --- lysimeter --- canola --- water table --- root distribution --- evapotranspiration --- sustainable irrigation --- bibliometric analysis --- innovation and technology --- unconventional water resources --- delayed transplanting --- seedling age --- seedling density --- wet season --- grain sorghum --- precipitation --- rainfed --- multiple linear regression --- crop yield --- principal component analysis --- water allocation --- WEAP model --- scenario --- Awash River Basin --- sustainability --- agriculture --- virtual water trade --- blue --- green --- arid region --- brackish water --- sub surface drip irrigation (SDI) --- salinity --- sodicity --- olives trees --- excess precipitation --- irrigation water quality --- virtual water --- brackish groundwater --- rainwater harvesting --- socio-economic impacts


Book
Molecular Mechanisms of Leaf Morphogenesis
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Leaf morphology is obviously determined in a plant. By contrast, its morphology is often changeable when the plant copes with various environmental changes. To update our understanding of the regulatory mechanisms of leaf morphogenesis with robustness and flexibility, this book provides a series of academic papers that cover molecular mechanism of leaf morphogenesis and offers readers' opportunities to find beautiful mechanisms that plants develop.


Book
Plant Adaptation to Global Climate Change
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant Adaptation to Global Climate Change discusses the issues of the impact of climate change factors (abiotic and biotic) on vegetation. This book also deals with simulation modeling approaches to understanding the long-term effects of different environmental factors on vegetation. This book is a valuable resource for the environmental science research community, including those interested in assessing climate change impacts on vegetation and researchers working on simulation modeling.


Book
Remote Sensing in Agriculture: State-of-the-Art
Authors: --- ---
ISBN: 303655484X 3036554831 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- feature selection --- spectral angle mapper --- support vector machine --- support vector regression --- hyperspectral imaging --- UAV --- cross-scale --- yellow rust --- spatial resolution --- winter wheat --- MODIS --- northern Mongolia --- remote sensing indices --- spring wheat --- yield estimation --- UAV-based LiDAR --- biomass --- crop height --- field phenotyping --- oasis crop type mapping --- Sentinel-1 and 2 integration --- statistically homogeneous pixels (SHPs) --- red-edge spectral bands and indices --- recursive feature increment (RFI) --- random forest (RF) --- unmanned aerial vehicles (UAVs) --- remote sensing (RS) --- thermal UAV RS --- thermal infrared (TIR) --- precision agriculture (PA) --- crop water stress monitoring --- plant disease detection --- vegetation status monitoring --- Landsat --- data blending --- crop yield prediction --- gap-filling --- volumetric soil moisture --- synthetic aperture radar (SAR) --- Sentinel-1 --- soil moisture semi-empirical model --- soil moisture Karnataka India --- reflectance --- digital number (DN) --- vegetation index (VI) --- Parrot Sequoia (Sequoia) --- DJI Phantom 4 Multispectral (P4M) --- Synthetic Aperture Radar --- SAR --- lodging --- Hidden Markov Random Field --- HMRF --- CDL --- corn --- soybean --- crop Monitoring --- crop management --- apple orchard damage --- polarimetric decomposition --- entropy --- anisotropy --- alpha angle --- storm damage mapping --- economic loss --- insurance support


Book
Artificial Neural Networks in Agriculture
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible.

Keywords

artificial neural network (ANN) --- Grain weevil identification --- neural modelling classification --- winter wheat --- grain --- artificial neural network --- ferulic acid --- deoxynivalenol --- nivalenol --- MLP network --- sensitivity analysis --- precision agriculture --- machine learning --- similarity --- metric --- memory --- deep learning --- plant growth --- dynamic response --- root zone temperature --- dynamic model --- NARX neural networks --- hydroponics --- vegetation indices --- UAV --- neural network --- corn plant density --- corn canopy cover --- yield prediction --- CLQ --- GA-BPNN --- GPP-driven spectral model --- rice phenology --- EBK --- correlation filter --- crop yield prediction --- hybrid feature extraction --- recursive feature elimination wrapper --- artificial neural networks --- big data --- classification --- high-throughput phenotyping --- modeling --- predicting --- time series forecasting --- soybean --- food production --- paddy rice mapping --- dynamic time warping --- LSTM --- weakly supervised learning --- cropland mapping --- apparent soil electrical conductivity (ECa) --- magnetic susceptibility (MS) --- EM38 --- neural networks --- Phoenix dactylifera L. --- Medjool dates --- image classification --- convolutional neural networks --- transfer learning --- average degree of coverage --- coverage unevenness coefficient --- optimization --- high-resolution imagery --- oil palm tree --- CNN --- Faster-RCNN --- image identification --- agroecology --- weeds --- yield gap --- environment --- health --- crop models --- soil and plant nutrition --- automated harvesting --- model application for sustainable agriculture --- remote sensing for agriculture --- decision supporting systems --- neural image analysis


Book
Site-Specific Nutrient Management
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of nitrogen gap (NG), i.e., its recognition and amelioration, forms the core of this book entitled Site-Specific Nutrient Management (SSNM). Determination of the presence of an NG between fields on a farm and/or within a particular field, together with its size, requires a set of highly reliable diagnostic tools. The necessary set of diagnostic tools, based classically on pedological and agrochemical methods, should be currently supported by remote-sensing methods. A combination of these two groups of methods is the only way to recognize the factors responsible for yield gap (YG) appearance and to offer a choice of measures for its effective amelioration. The NG concept is discussed in the two first papers (Grzebisz and Łukowiak, Agronomy 2021, 11, 419; Łukowiak et al., Agronomy 2020, 10, 1959). Crop productivity depends on a synchronization of plant demand for nitrogen and its supply from soil resources during the growing season. The action of nitrate nitrogen (N–NO3), resulting in direct plant crop response, can be treated by farmers as a crucial growth factor. The expected outcome also depends on the status of soil fertility factors, including pools of available nutrients and the activity of microorganisms. Three papers are devoted to these basic aspects of soil fertility management (Sulewska et al., Agronomy 2020, 10, 1958; Grzebisz et al., Agronomy 2020, 10, 1701; Hlisnikovsky et al., Agronomy 2021, 11, 1333). The resistance of a currently cultivated crop to seasonal weather variability depends to a great extent on the soil fertility level. This aspect is thoroughly discussed for three distinct soil types and climates with respect to their impact on yield (Hlisnikovsky et al., Agronomy 2020, 10, 1160—Czech Republic; Wang et al., Agronomy 2020, 10, 1237—China; Łukowiak and Grzebisz et al., Agronomy 2020, 10, 1364—Poland). In the fourth section of this book, the division a particular field into homogenous production zones is discussed as a basis for effective nitrogen management within the field. This topic is presented for different regions and crops (China, Poland, and the USA) (Cammarano et al., Agronomy 2020, 10, 1767; Panek et al., Agronomy 2020, 10, 1842; Larson et al., Agronomy 2020, 10, 1858).

Keywords

Triticum aestivum L. --- farmyard manure --- mineral fertilizers --- crude protein content --- soil properties, site-specific requirements --- yield --- site-specific nitrogen management --- regional optimal nitrogen management --- net return --- nitrogen use efficiency --- spatial variability --- temporal variability --- seed density --- N uptake --- indices of N productivity --- mineral N --- indigenous Nmin at spring --- post-harvest Nmin --- N balance --- N efficiency --- maximum photochemical efficiency of photosystem II --- chlorophyll content index --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti --- Si --- B --- Mo --- Zn) --- soil --- nitrate nitrogen content --- contents of available phosphorus --- potassium --- magnesium --- calcium --- cardinal stages of WOSR growth --- PCA --- site-specific nutrient management --- soil brightness --- satellite remote sensing --- crop yield --- soil fertility --- winter wheat --- winter triticale --- vegetation indices --- NDVI --- grain yield --- number of spikes --- economics --- normalized difference vegetation index (NDVI) --- on-the-go sensors --- winter oilseed rape → winter triticale cropping sequence --- N input --- N total uptake --- N gap --- Beta vulgaris L. --- organic manure --- weather conditions --- soil chemistry --- sugar concentration --- climatic potential yield --- yield gap --- soil constraints --- subsoil --- remote sensing-techniques --- field --- a field --- crop production --- sustainability --- homogenous productivity units --- nitrogen indicators: in-season --- spatial --- vertical variability of N demand and supply --- spectral imagery

Listing 1 - 10 of 14 << page
of 2
>>
Sort by