Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

Vlaams Parlement (2)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Molecular Marker Technology for Crop Improvement
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.

Keywords

durum wheat --- landraces --- marker-trait association --- root system architecture --- sugarcane --- parental line --- population structure --- plant breeding --- genetic diversity --- simple sequence repeats (SSR) --- Persea americana --- SMRT sequencing --- simple sequence repeat --- genetic relationship --- flavonoid biosynthesis --- fruit coloration --- marker-assisted selection --- microsatellites --- Rubus --- gene prioritization --- linkage disequilibrium --- tropical maize --- brown rice recovery --- milled rice recovery --- head rice recovery --- milling yield traits --- QTL mapping --- rice (Oryza sativa L.) --- tetraploid potato --- SNP markers --- SLAF-seq technology --- high-density genetic linkage map --- genome wide association study --- GWAS water use --- agronomic traits --- MTAs --- candidate genes --- TKW --- sedimentation volume --- SDS --- YR --- drought stress --- association mapping --- QTL hotspot --- seminal root --- gene pyramiding --- aroma --- QTL --- chromosome --- selection --- introgression line --- maize (Zea mays L.) --- Striga resistance/tolerance --- F2:3 biparental mapping --- Marker-assisted selection --- persimmon --- sex determination --- fruit astringency --- molecular markers --- genomics --- genomic selection --- genomic prediction --- whole genome regression --- grain quality --- near infra-red spectroscopy --- cereal crop --- sorghum --- multi-trait --- Triticum aestivum --- mapping population --- leaf rust --- stem rust --- pathogen races --- disease resistance --- apricot --- MAS --- breeding --- MATH --- PPV resistance --- agarose --- ParPMC --- ParPMC2-del --- high resolution melting --- ISBP markers --- drought --- MQTL --- wheat variability --- crop breeding --- genetic maps --- GWAS --- marker assisted selection --- DNA sequencing


Book
Recent Advances in Genetics and Breeding of Major Staple Food Crops
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

To meet the global food demand of an increasing population, food production has to be increased by 60% by 2050. The main production constraints, such as climate change, biotic stresses, abiotic stresses, soil nutrition deficiency problems, problematic soils, etc., have to be addressed on an urgent basis. More than 50% of human calories are from three major cereals: rice, wheat, and maize. The harnessing of genetic diversity by novel allele mining assisted by recent advances in biotechnological and bioinformatics tools will enhance the utilization of the hidden treasures in the gene bank. Technological advances in plant breeding will provide some solutions for the biofortification, stress resistance, yield potential, and quality improvement in staple crops. The elucidation of the genetic, physiological, and molecular basis of useful traits and the improvement of the improved donors containing multiple traits are key activities for variety development. High-throughput genotyping systems assisted by bioinformatics and data science provide efficient and easy tools for geneticists and breeders. Recently, new breeding techniques applied in some food crops have become game-changers in the global food crop market. With this background, we invited 18 eminent researchers working on food crops from across the world to contribute their high-quality original research manuscripts. The research studies covered modern food crop genetics and breeding.

Keywords

dry direct-seeded rice --- early vigor --- QTL --- candidate gene --- phenotyping --- EMS --- MutMap --- mutagenesis --- CLE7 --- tropical maize --- fasciation --- mapping --- radish --- microspore culture --- regeneration rate --- outcrossing --- two-way pseudo-testcross model --- Oryza sativa L. --- PPDK --- flo4-5 --- floury endosperm --- rice --- allelopathy --- yield --- HYV --- Tongil --- indica --- japonica --- SNP --- molecular breeding --- wheat quality --- wheat milling --- wheat hardness --- puroindolines --- water absorption capacity --- crop genetics --- Solanum tuberosum --- abiotic stress --- phenylpropanoids --- essential amino acid --- transcriptome --- small RNA --- comparative genomics --- nutrition --- days to heading --- Hd1 --- Ghd7 --- Hd16 --- chromosome segment substitution lines (CSSLs) --- quantitative trait locus (QTL) --- marker-assisted selection (MAS) --- cold tolerance (CT) --- gene editing --- genetically modified --- genetically modified organism (GMO) --- crop breeding --- ribonucleoprotein complex (RNP) --- genetic screening --- landraces --- genetic diversity --- population structure --- West Africa --- maize improvement --- DArTseq markers --- co-expression network --- drought-tolerant-yield --- reproductive-stage drought --- qDTYs --- transcriptomics --- watermelon --- pentatricopeptide-repeat (PPR) gene family --- comprehensive analysis --- expression profiling --- flesh color --- canola --- Brassica napus --- genetics --- gene technology --- genomics --- disease resistance --- CSSLs --- drought stress --- ‘KDML105’ rice --- low-temperature germinability --- interspecific cross --- interaction --- peanut --- core collection --- genome-wide association study --- linkage disequilibrium

Listing 1 - 2 of 2
Sort by