Narrow your search

Library

KU Leuven (5)

UAntwerpen (5)

UGent (4)

ULiège (4)

UCLouvain (3)

ULB (3)

UMons (3)

UHasselt (2)

VUB (2)

LUCA School of Arts (1)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2016 (1)

2007 (1)

1993 (1)

1979 (1)

1970 (1)

Listing 1 - 5 of 5
Sort by
Harmonic analysis : real variable methods, orthogonality, and oscillatory integrals
Author:
ISBN: 0691032165 140088392X 9780691032160 Year: 1993 Volume: 43 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, Lsup estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.

Keywords

Harmonic analysis. Fourier analysis --- Harmonic analysis --- Analyse harmonique --- Harmonic analysis. --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Groupe de Heisenberg. --- Addition. --- Analytic function. --- Asymptote. --- Asymptotic analysis. --- Asymptotic expansion. --- Asymptotic formula. --- Automorphism. --- Axiom. --- Banach space. --- Bessel function. --- Big O notation. --- Bilinear form. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded mean oscillation. --- Bounded operator. --- Boundedness. --- Cancellation property. --- Cauchy's integral theorem. --- Cauchy–Riemann equations. --- Characteristic polynomial. --- Characterization (mathematics). --- Commutative property. --- Commutator. --- Complex analysis. --- Convolution. --- Differential equation. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Dirac delta function. --- Dirichlet problem. --- Elliptic operator. --- Existential quantification. --- Fatou's theorem. --- Fourier analysis. --- Fourier integral operator. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fubini's theorem. --- Function (mathematics). --- Fundamental solution. --- Gaussian curvature. --- Hardy space. --- Harmonic function. --- Heisenberg group. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Hölder's inequality. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Lagrangian (field theory). --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Line segment. --- Linear map. --- Lipschitz continuity. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Martingale (probability theory). --- Mathematical induction. --- Maximal function. --- Meromorphic function. --- Multiplication operator. --- Nilpotent Lie algebra. --- Norm (mathematics). --- Number theory. --- Operator theory. --- Order of integration (calculus). --- Orthogonality. --- Oscillatory integral. --- Poisson summation formula. --- Projection (linear algebra). --- Pseudo-differential operator. --- Pseudoconvexity. --- Rectangle. --- Riesz transform. --- Several complex variables. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Spectral theory. --- Square (algebra). --- Stochastic differential equation. --- Subharmonic function. --- Submanifold. --- Summation. --- Support (mathematics). --- Theorem. --- Translational symmetry. --- Uniqueness theorem. --- Variable (mathematics). --- Vector field. --- Fourier, Analyse de --- Fourier, Opérateurs intégraux de


Book
Lectures on pseudo-differential operators : regularity theorems and applications to non-elliptic problems
Authors: ---
ISBN: 0691082472 0691601097 1400870488 0691630852 Year: 1979 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems.Originally published in 1979.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

517.982.4 --- Pseudodifferential operators --- Operators, Pseudodifferential --- Pseudo-differential operators --- Theory of generalized functions (distributions) --- Pseudodifferential operators. --- 517.982.4 Theory of generalized functions (distributions) --- Operator theory --- Differential equations, Partial --- Équations aux dérivées partielles --- Opérateurs pseudo-différentiels --- Addition. --- Adjoint. --- Approximation. --- Asymptotic expansion. --- Banach space. --- Bounded operator. --- Boundedness. --- Calculation. --- Change of variables. --- Coefficient. --- Compact space. --- Complex analysis. --- Computation. --- Corollary. --- Cotangent bundle. --- Derivative. --- Differential operator. --- Disjoint union. --- Elliptic partial differential equation. --- Estimation. --- Euclidean distance. --- Euclidean vector. --- Existential quantification. --- Fourier integral operator. --- Fourier transform. --- Geometric series. --- Heat equation. --- Heisenberg group. --- Homogeneous distribution. --- Infimum and supremum. --- Integer. --- Integration by parts. --- Intermediate value theorem. --- Jacobian matrix and determinant. --- Left inverse. --- Linear combination. --- Linear map. --- Mean value theorem. --- Monograph. --- Monomial. --- Nilpotent group. --- Operator (physics). --- Operator norm. --- Order of magnitude. --- Orthogonal complement. --- Parametrix. --- Parity (mathematics). --- Partition of unity. --- Polynomial. --- Projection (linear algebra). --- Pseudo-differential operator. --- Quadratic function. --- Regularity theorem. --- Remainder. --- Requirement. --- Right inverse. --- Scientific notation. --- Self-reference. --- Several complex variables. --- Singular integral. --- Smoothness. --- Sobolev space. --- Special case. --- Submanifold. --- Subset. --- Sum of squares. --- Summation. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Transpose. --- Triangle inequality. --- Uniform boundedness. --- Upper and lower bounds. --- Variable (mathematics). --- Without loss of generality. --- Zero set.

Singular integrals and differentiability properties of functions
Author:
ISBN: 0691080798 1400883881 9780691080796 Year: 1970 Volume: 30 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.

Keywords

Functions of real variables. --- Harmonic analysis. --- Singular integrals. --- Multiplicateurs (analyse mathématique) --- Multipliers (Mathematical analysis) --- Functional analysis --- Harmonic analysis. Fourier analysis --- Functions of real variables --- Harmonic analysis --- Singular integrals --- Fonctions de variables réelles --- Analyse harmonique --- Intégrales singulières --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Functions of several real variables --- Differential calculus --- 517.518.5 --- Integrals, Singular --- Integral operators --- Integral transforms --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Real variables --- Functions of complex variables --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- A priori estimate. --- Analytic function. --- Banach algebra. --- Banach space. --- Basis (linear algebra). --- Bessel function. --- Bessel potential. --- Big O notation. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded operator. --- Bounded set (topological vector space). --- Bounded variation. --- Boundedness. --- Cartesian product. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Commutative property. --- Complex analysis. --- Complex number. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Derivative. --- Difference "ient. --- Difference set. --- Differentiable function. --- Dimension (vector space). --- Dimensional analysis. --- Dirac measure. --- Dirichlet problem. --- Distribution function. --- Division by zero. --- Dot product. --- Dual space. --- Equation. --- Existential quantification. --- Family of sets. --- Fatou's theorem. --- Finite difference. --- Fourier analysis. --- Fourier series. --- Fourier transform. --- Function space. --- Green's theorem. --- Harmonic function. --- Hilbert space. --- Hilbert transform. --- Homogeneous function. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Interval (mathematics). --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Mathematical induction. --- Maximal function. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Multiple integral. --- Open set. --- Order of integration. --- Orthogonality. --- Orthonormal basis. --- Partial derivative. --- Partial differential equation. --- Partition of unity. --- Periodic function. --- Plancherel theorem. --- Pointwise. --- Poisson kernel. --- Polynomial. --- Real variable. --- Rectangle. --- Riesz potential. --- Riesz transform. --- Scientific notation. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Splitting lemma. --- Subsequence. --- Subset. --- Summation. --- Support (mathematics). --- Theorem. --- Theory. --- Total order. --- Unit vector. --- Variable (mathematics). --- Zero of a function. --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Multiplicateurs (analyse mathématique)

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32).
Author:
ISBN: 140088389X 069108078X 9781400883899 9780691080789 Year: 2016 Volume: 32 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Keywords

Harmonic analysis. --- Harmonic functions. --- Functions, Harmonic --- Laplace's equations --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Harmonic analysis. Fourier analysis --- Harmonic analysis --- Fourier analysis --- Harmonic functions --- Analyse harmonique --- Analyse de Fourier --- Fonctions harmoniques --- Fourier Analysis --- Fourier, Transformations de --- Euclide, Espaces d' --- Bessel functions --- Differential equations, Partial --- Fourier series --- Lamé's functions --- Spherical harmonics --- Toroidal harmonics --- Banach algebras --- Time-series analysis --- Analysis, Fourier --- Fourier analysis. --- Basic Sciences. Mathematics --- Analysis, Functions --- Analysis, Functions. --- Calculus --- Mathematical analysis --- Mathematics --- Fourier, Transformations de. --- Euclide, Espaces d'. --- Potentiel, Théorie du --- Fonctions harmoniques. --- Potential theory (Mathematics) --- Analytic continuation. --- Analytic function. --- Banach algebra. --- Banach space. --- Bessel function. --- Borel measure. --- Boundary value problem. --- Bounded operator. --- Bounded set (topological vector space). --- Cartesian coordinate system. --- Cauchy–Riemann equations. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Complex plane. --- Conformal map. --- Conjugate transpose. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Differentiation of integrals. --- Dimensional analysis. --- Dirichlet problem. --- Disk (mathematics). --- Distribution (mathematics). --- Equation. --- Euclidean space. --- Existential quantification. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fubini's theorem. --- Function (mathematics). --- Function space. --- Green's theorem. --- Hardy's inequality. --- Hardy–Littlewood maximal function. --- Harmonic function. --- Hermitian matrix. --- Hilbert transform. --- Holomorphic function. --- Homogeneous function. --- Inequality (mathematics). --- Infimum and supremum. --- Interpolation theorem. --- Interval (mathematics). --- Lebesgue integration. --- Lebesgue measure. --- Linear interpolation. --- Linear map. --- Linear space (geometry). --- Line–line intersection. --- Liouville's theorem (Hamiltonian). --- Lipschitz continuity. --- Locally integrable function. --- Lp space. --- Majorization. --- Marcinkiewicz interpolation theorem. --- Mean value theorem. --- Measure (mathematics). --- Mellin transform. --- Monotonic function. --- Multiplication operator. --- Norm (mathematics). --- Operator norm. --- Orthogonal group. --- Paley–Wiener theorem. --- Partial derivative. --- Partial differential equation. --- Plancherel theorem. --- Pointwise convergence. --- Poisson kernel. --- Poisson summation formula. --- Polynomial. --- Principal value. --- Quadratic form. --- Radial function. --- Radon–Nikodym theorem. --- Representation theorem. --- Riesz transform. --- Scientific notation. --- Series expansion. --- Singular integral. --- Special case. --- Subharmonic function. --- Support (mathematics). --- Theorem. --- Topology. --- Total variation. --- Trigonometric polynomial. --- Trigonometric series. --- Two-dimensional space. --- Union (set theory). --- Unit disk. --- Unit sphere. --- Upper half-plane. --- Variable (mathematics). --- Vector space. --- Fourier, Analyse de --- Potentiel, Théorie du. --- Potentiel, Théorie du --- Espaces de hardy

Listing 1 - 5 of 5
Sort by