Narrow your search

Library

ULB (9)

KU Leuven (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

UGent (4)

FARO (3)

More...

Resource type

book (9)

digital (1)


Language

English (9)


Year
From To Submit

2022 (4)

2019 (2)

2016 (1)

2013 (1)

2012 (1)

Listing 1 - 9 of 9
Sort by

Multi
Auger- and x-ray photoelectron spectroscopy in materials science : a user-oriented guide
Authors: ---
ISBN: 9783642273810 9783642273803 Year: 2013 Publisher: Berlin ; Heidelberg : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.


Book
Hard X-ray Photoelectron Spectroscopy (HAXPES)
Author:
ISBN: 3319240412 3319240439 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.


Book
Auger- and x-ray photoelectron spectroscopy in materials science : a user-oriented guide
Author:
ISBN: 3642273807 3642431739 3642273815 Year: 2012 Volume: 49 Publisher: Berlin ; Heidelberg : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.  .


Book
Advanced Synchrotron Radiation Techniques for Nanostructured Materials
Author:
ISBN: 3039216813 3039216805 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nanostructured materials exploit physical phenomena and mechanisms that cannot be derived by simply scaling down the associated bulk structures and phenomena; furthermore, new quantum effects come into play in nanosystems. The exploitation of these emerging nanoscale interactions prompts the innovative design of nanomaterials. Understanding the behavior of materials on all length scales—from the nanostructure up to the macroscopic response—is a critical challenge for materials science. Modern analytical technologies based on synchrotron radiation (SR) allow for the non-destructive investigation of the chemical, electronic, and magnetic structure of materials in any environment. SR facilities have developed revolutionary new ideas and experimental setups for characterizing nanomaterials, involving spectroscopy, diffraction, scatterings, microscopy, tomography, and all kinds of highly sophisticated combinations of such investigation techniques. This book is a collection of contributions addressing several aspects of synchrotron radiation as applied to the investigation of chemical, electronic, and magnetic structure of nanostructured materials. The results reported here provide not only an interesting and multidisciplinary overview of the chemicophysical investigations of nanostructured materials carried out by state-of-the-art SR-induced techniques, but also an exciting glance into the future perspectives of nanomaterial characterization methods.


Book
Valorization of Material Wastes for Environmental, Energetic and Biomedical Applications
Author:
ISBN: 3036556923 3036556915 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of materials from industrial wastes has attracted the attention of the research community for years. A material's physico-chemical characteristics have specific impacts its properties and their application in environmental, energetic, and biomedical areas, such as in pollutant removal; CO2 capture; energy storage; catalytic oxidation and reduction processes; the conversion of biomass to biofuels; and drug delivery. Examples of such materials are activated carbons, clays, and zeolites, among others. The aim of this Special Issue is to collect the recent advances and progresses developed in this field considering valorised materials from industrial wastes and their applications in environmental, energetic, and biomedical areas.


Book
Green Synthesis of Nanomaterials
Author:
ISBN: 3039217879 3039217860 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called “green synthesis”, where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes—two key features determining their bioactivity.


Book
Graphene and Other 2D Layered Nanomaterials and Hybrid Structures: Synthesis, Properties and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

ResearchGate academic profile and social networking site for researchers: "Graphene, one of the most interesting and versatile materials of modern times, is recognized for its unique properties, which are strongly different from its bulk counterpart. This discovery has recently stimulated research on other two-dimensional (2D) systems, all consisting of a single layer of atoms. Two-dimensional materials have also emerged as major candidates for use in next-generation applications as a result of the rapid discovery of their any properties. In this Special Issue, we have collected a few recent studies that examine some of these new areas of work in the field of 2D materials."


Book
Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems.

Keywords

Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- energy storage system --- power conditioning system --- silicon carbide --- vanadium redox flow batteries --- AlGaN/GaN --- SiC --- high electron mobility transistor --- Schottky barrier diode --- breakdown field --- noise --- charge traps --- radio frequency --- wide-bandgap (WBG) --- gallium nitride (GaN) --- silicon carbide (SiC) --- high electron mobility transistor (HEMT) --- metal-oxide-semiconductor field effect transistor (MOSFET) --- driving technology --- nickel oxide --- annealing temperature --- crystallite size --- optical band gap --- electrochromic device --- indium oxide thin film --- solution method --- plasma surface treatment --- bias stability --- aluminum nitride --- Schottky barrier diodes --- radio frequency sputtering --- X-ray diffraction --- X-ray photoelectron spectroscopy --- piezoelectric micromachined ultrasonic transducers --- ranging --- time of flight (TOF) --- time to digital converter circuit (TDC) --- AlGaN/GaN heterojunction --- p-GaN gate --- unidirectional operation --- rectifying electrode --- first-principles --- density functional theory --- pure β-Ga2O3 --- Sr-doped β-Ga2O3 --- p-type doping --- band structure --- density of states --- optical absorption --- AlN buffer layer --- NH3 growth interruption --- strain relaxation --- GaN-based LED --- low defect density --- gate bias modulation --- palladium catalyst --- gallium nitride --- nitrogen dioxide gas sensor --- laser micromachining --- sapphire --- AlGaN/GaN heterostructures --- high-electron mobility devices --- p-GaN gate HEMT --- normally off --- low-resistance SiC substrate --- temperature --- high electron-mobility transistor (HEMT) --- equivalent-circuit modeling --- microwave frequency --- scattering-parameter measurements --- GaN --- MIS-HEMTs --- fabrication --- threshold voltage stability --- supercritical technology --- GaN power HEMTs --- breakdown voltage --- current collapse --- compensation ratio --- auto-compensation --- carbon doping --- HVPE --- AlN --- high-temperature --- buffer layer --- nitridation --- high-electron mobility transistor --- heterogeneous integration --- SOI --- QST --- crystal growth --- cubic and hexagonal structure --- blue and yellow luminescence --- electron lifetime --- wafer dicing --- stealth dicing --- laser thermal separation --- dry processing --- laser processing --- wide bandgap semiconductor --- photovoltaic module --- digital signal processor --- synchronous buck converter --- polar --- semi-polar --- non-polar --- magnetron sputtering --- HTA --- GaN-HEMT mesa structures --- 2DEG --- X-ray sensor --- X-ray imaging --- n/a


Book
Functional Natural-Based Polymers
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Natural polymers are already used for a variety of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. However, they have also found other applications, for example, in the food industry, the pharmaceutical industry, as firefighting materials, water purification, etc. Different polysaccharide and protein-based systems have been developed. They each have their properties that render them useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. This Special Issue will explore the design, synthesis, processing, characterization, and applications of new functional natural-based polymers.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- light conversion film --- cellulose acetate --- europium --- sensitization --- X-ray photoelectron spectroscopy --- surface plasmon resonance --- thin film --- quantum dot --- 4-(2-pyridylazo)resorcinol --- chitosan --- graphene oxide --- 3D printing --- carboxymethyl cellulose --- hydrogel --- lyophilization --- dissolution --- release model --- customization --- NO-donor --- topical release --- polymeric matrices --- microbial infections --- wound healing --- blood circulation --- semisynthetic polymers --- natural rubber --- rice husk ash --- alginate --- mechanical properties --- dielectric properties --- nanohydrogel --- food applications --- biopolymers --- polysaccharide --- neural network --- chicken feet --- sensorial quality --- food quality --- gelatine --- hyaluronic acid --- polyethylene oxide --- electrospinning --- nanofibers --- wound dressings --- pectin --- pectinase --- wheat bran --- banana peel --- Bacillus amyloliquefaciens --- prebiotics --- mucilage --- pectin polysaccharide --- Opuntia ficus-indica --- aloe vera --- acemannan --- Cactaceae --- Asphodelaceae --- porcine gastric mucin --- methacryloyl mucin --- double-cross-linked networks --- circular dichroism --- mechanical characterization --- date palm trunk mesh --- cellulose --- lignocellulosic waste --- alpha cellulose --- nanocellulose --- agro-byproduct --- Bacillus licheniformis --- bioconversion --- pomelo albedo --- sucrolytic --- lubricant --- tribology --- albumin deposition --- contact lens --- surface roughness --- bio-based polyurethanes --- prepolymers --- cellulose-derived polyol --- cellulose-citrate --- polyurethane composites --- poly(lactic acid) --- nanocomposites --- tannin --- lignin --- thermal degradation kinetics --- decomposition mechanism --- pyrolysis --- nanocomposite --- nanofertilizer --- slow release --- ammonia oxidase gene --- quantitative polymerase chain reaction --- microflora N cycle --- nutrient use efficiency --- soil N content --- aerogels --- cold plasma coating --- hydrophobization --- pore structure --- chitinous fishery wastes --- chitinase --- crab shells --- Paenibacillus --- N-acetyl-D-glucosamine --- phenol --- adhesive hydrogels --- nanomaterials --- surface modification --- latex --- lignocellulosic fibers --- conventional fillers --- CNC --- esterification reaction --- graft copolymerization --- hydrophobic modification --- flocculant --- crosslinking --- peptides --- glutaraldehyde --- specified risk materials --- laccase --- melanin --- decolorization --- natural mediators --- glycerol --- polymer electrolyte --- ionic conductivity --- biochemistry --- pH and rumen temperature --- protozoa --- zero valent iron --- nanoparticles --- ethylene glycol --- methylene blue --- polyhydroxyalkanoates --- poly(3-hydroxybutyrate-co-3-hydroxyhexanoate --- melt processing --- extrusion --- injection molding --- elongation at break --- crystallization --- DoE --- oil palm biomass waste --- anionic hydrogel --- swelling --- salt crosslinking agent --- CoNi nanocomposite --- cellulose paper --- antibacterial potential --- degradation --- annealing --- acetylation --- potato starch --- emulsion capacity --- FTIR --- Malva parviflora --- natural polymers --- physicochemical properties --- rheology --- birch wood --- pre-treatment --- process parameter --- lignocellulose --- 2-furaldehyde --- Komagataeibacter --- stretchable bacterial cellulose --- enhanced strain --- vitamin C --- collagen --- anisotropy --- electron irradiation --- tensile test --- activated carbon --- MnO2 --- Co NPs --- antibacterial activity --- hydrogels --- antimicrobial activities --- functionalized materials --- cellulose derivatives --- flexor tendon repair --- anti-inflammatory --- anti-adhesion --- antimicrobial --- polymer-based constructs --- biosorbent --- copper --- adsorption --- model studies --- aqueous medium --- biodegradable polymers --- chemical modification --- food packaging --- free radical polymerization --- superabsorbent --- water-retaining agent --- thermal properties --- Mimosa pudica mucilage --- extraction optimization --- Box-Behnken design --- response surface methodology --- pH-responsive on–off switching --- zero-order release --- antimicrobial activity --- bacterial cellulose --- cytotoxicity --- nisin --- stability

Listing 1 - 9 of 9
Sort by