Narrow your search

Library

KU Leuven (28)

LUCA School of Arts (28)

Odisee (28)

Thomas More Kempen (28)

Thomas More Mechelen (28)

UCLL (28)

VIVES (28)

Vlaams Parlement (28)

FARO (27)

ULB (8)

More...

Resource type

book (27)

periodical (1)


Language

English (28)


Year
From To Submit

2022 (4)

2021 (6)

2020 (8)

2019 (4)

2018 (1)

More...
Listing 1 - 10 of 28 << page
of 3
>>
Sort by

Book
Chromatin and epigenetics
Authors: ---
Year: 2020 Publisher: London : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Genomics has gathered broad public attention since Lamarck put forward his top-down hypothesis of 'motivated change' in 1809 in his famous book "Philosophie Zoologique" and even more so since Darwin published his famous bottom-up theory of natural selection in "The Origin of Species" in 1859. The public awareness culminated in the much anticipated race to decipher the sequence of the human genome in 2002. Over all those years, it has become apparent that genomic DNA is compacted into chromatin with a dedicated 3D higher-order organization and dynamics, and that on each structural level epigenetic modifications exist. The book "Chromatin and Epigenetics" addresses current issues in the fields of epigenetics and chromatin ranging from more theoretical overviews in the first four chapters to much more detailed methodologies and insights into diagnostics and treatments in the following chapters. The chapters illustrate in their depth and breadth that genetic information is stored on all structural and dynamical levels within the nucleus with corresponding modifications of functional relevance. Thus, only an integrative systems approach allows to understand, treat, and manipulate the holistic interplay of genotype and phenotype creating functional genomes. The book chapters therefore contribute to this general perspective, not only opening opportunities for a true universal view on genetic information but also being key for a general understanding of genomes, their function, as well as life and evolution in general.

Keywords

Chromatin. --- Epigenetics.


Book
Chromatin Remodelling
Author:
ISBN: 953511087X 9535153676 Year: 2013 Publisher: IntechOpen

Loading...
Export citation

Choose an application

Bookmark

Abstract

The term "chromatin remodelling" is widely used to describe changes in chromatin structure which is controlled by histone-modifying enzymes, chromatin remodelling complexes, non-histone DNA-binding proteins and noncoding RNAs. Many human diseases such as cancer, various genetic syndromes, autism and infectious disease have been linked to the disruption of these control processes by genetic, environmental or microbial factors. Therefore, to unravel the mechanisms by which they operate is one of the most exciting and rapid developing fields of modern biology and will contribute to new ways in treatment of these diseases. The chapters in this book will focus on recent advances in our understanding of the mechanisms that govern the dynamic structural of chromatin, thereby providing important insights into gene regulation, DNA repair, and human diseases.


Book
Chromatin & transcriptional tango on the immune dance floor
Authors: ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The process of generating differentiated cell types performing specific effector functions from their respective undifferentiated precursors is dictated by extracellular signals and the recipient cell's ability to transmit those signals to effect changes in cellular functions. One major mechanism for bringing about such changes is at the level of transcription. Thus, inducing transcription of previously silent genes and suppressing active genes in response to the extracellular signal can result in acquiring new functions by the cells. The transcriptional machinery, comprising of RNA Polymerase II and associated general transcription factors, assemble at the core promoter of eukaryotic protein coding genes. The rate and/or stability of formation of this machinery dictate the transcriptional regulation of the corresponding gene, which can be at the level of chromatin regulation as well as enhancer-promoter communication. Such coordinated temporal and spatial regulation of gene expression in response to specific signals determines lineage differentiation, cellular proliferation and development. Every event in the life cycle of a lymphocyte is modulated by the signals they receive. For instance, expression of the B cell antigen receptor (BCR) on the surface of B cells is a hallmark of various stages of B cell development--signaling via the BCR is important both during early/antigen independent (tonic) and late/antigen dependent phases of development. Despite the established requirement for BCR signaling during various phases of B cell maturation, how BCR signaling connects to chromatin changes and downstream transcriptional pathways in each step of development remains poorly understood. Similar questions also remain in other cells of the immune system. Moreover, how the enhancers communicate to the promoters in a stage specific fashion and in the context of chromatin also remain unclear. Chromatin modifiers are generally present and active in most cell types. How could then there be differences in chromatin architecture dependent on a particular stage of development? The B (and T) lymphocytes also perform a unique developmental program because they have an unparalleled genetic makeup—the genetic loci that encode their cell surface receptors are in an ‘unrearranged” or “germline” configuration during the early stages of development. Thus, they not only express stage specific genes and transcription factors during each developmental stage, they need to undergo rearrangement of their cognate receptor loci in a strictly ordered fashion to generate a pool of receptor proteins, each capable of recognizing a specific antigen, which they encounter at a much later step. Hence, there must be a strict negotiation between the recombination machinery and the transcriptional machinery at every developmental step of the way. Importantly, along the way, the B cells expressing receptors capable of recognizing self-antigens must be eliminated to avoid autoimmune responses and only those cells capable of recognizing foreign-antigens are preserved to reach peripheral organs where they eventually meet pathogens. How are these processes coordinately regulated in a stage specific fashion and what role does chromatin play? Are the rules of engagement different in innate versus adaptive immune responses? Here we seek to address some of these questions and provide our current understanding of signal-induced chromatin and transcriptional regulation of the immune system.


Book
Regulation of DNA Double Strand Break Repair by Local Chromatin Architecture
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Transcriptional and Chromatin Regulation in Adaptive and Innate Immune Cells
Authors: ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Epigenetics as a Deep Intimate Dialogue between Host and Symbionts
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Symbiosis is an intimate relationship between different living entities and is widespread in virtually all organisms. It was critical for the origin and diversification of Eukaryotes and represents a major driving force in evolution. Indeed, symbiosis may support a wide range of biological processes, including those underlying the physiology, development, reproduction, health, behavior, ecology and evolution of the organisms involved in the relationship. Although often confused with mutualism, when both organisms benefit from the association, symbiosis actually encompasses several and variable relationships. Among them is parasitism, when one organism benefits but the other is harmed, and commensalism, when one organism benefits and the other remains unaffected. Even if many symbiotic lifestyles do exist in nature, in many cases the intimacy between the partners is so deep that the “symbiont” (sensu strictu) resides into the tissues and/or cells of the other partner. Since the partners frequently belong to different kingdoms, e.g. bacteria, fungi, protists and viruses living in association with animal and plant hosts, their shared “language” should be a basic and ancient form of communication able to effectively blur the boundaries between extremely different living entities. In recent years studies on the role of epigenetics in shaping host-symbiont interactions have been flourishing. Epigenetic changes include, but are not limited to, DNA methylation, remodelling of chromatin structure through histone chemical modifications and RNA interference. In this E-book we present a series of papers exploring the fascinating developmental and evolutionary relationship between symbionts and hosts, by focusing on the mediating epigenetic processes that enable the communication to be effective and robust at both the individual, the ecological and the evolutionary time scales. In particular, the papers consider the role of epigenetic factors and mechanisms in the interactions among different species, comprising the holobiont and host-parasite relationships. On the whole, since epigenetics is fast-acting and reversible, enabling dynamic developmental communication between hosts and symbionts at several different time scale, we argue that it could account for the enormous plasticity that characterizes the interactions between all the organisms living symbiotically on our planet.


Book
New Insights into Mechanisms of Epigenetic Modifiers in Plant Growth and Development
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Cell Fate
Authors: --- --- --- --- --- et al.
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fundamental question of how an undifferentiated progenitor cell adopts a more specialized cell fate that then contributes to the development of specialized tissues, organs, organ systems and ultimately a unique individual of a given species has intrigued cell and developmental biologists for many years. Advances in molecular and cell biology have enabled investigators to identify genetic and epigenetic factors that contribute to these processes with increasing detail and also to define the various molecular characteristics of each cell fate with greater precision. Understanding these processes have also provided greater insights into disorders in which the normal mechanisms of cell fate determination are altered, such as in cancer and inherited malformations. With these advances have come techniques that facilitate the manipulation of cell fate, which have the potential to revolutionize the field of medicine by facilitating the repair and/or regeneration of diseased organs. Given the rapid advances that are occurring in the field, the articles in this eBook are both relevant and timely. These articles originally appeared online as part of the Research Topic “Cell Fate” overseen by my colleagues Dr. Lin, Dr. Buttitta, Dr. Maves, Dr. Dilworth, Dr. Paladini and myself and have been viewed extensively. Because of their popularity, they are now made available as an eBook, in a more easily downloadable form. Michael T. Chin


Book
Advances in Plant Meiosis: From Model Species to Crops
Authors: --- --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Epigenetic Modifications Associated with Abiotic and Biotic Stresses in Plants: An Implication for Understanding Plant Evolution
Authors: --- ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Alterations in gene expression are essential during growth and development phases and when plants are exposed to environmental challenges. Stress conditions induce gene expression modifications, which are associated with changes in the biochemical and physiological processes that help plants to avoid or reduce potential damage resulting from these stresses.After exposure to stress, surviving plants tend to flower earlier than normal and therefore transfer the accumulated epigenetic information to their progenies, given that seeds, where this information is stored, are formed at a later stage of plant development.DNA methylation is correlated with expression repression. Likewise, miRNA produced in the cell can reduce the transcript abundance or even prevent translation of mRNA. However, histone modulation, such as histone acetylation, methylation, and ubiquitination, can show distinct effects on gene expression. These alterations can be inherited, especially if the plants are consistently exposed to a particular environmental stress. Retrotransposons and retroviruses are foreign movable DNA elements that play an important role in plant evolution. Recent studies have shown that epigenetic alterations control the movement and the expression of genes harbored within these elements. These epigenetic modifications have an impact on the morphology, and biotic and abiotic tolerance in the subsequent generations because they can be inherited through the transgenerational memory in plants. Therefore, epigenetic modifications, including DNA methylation, histone modifications, and small RNA interference, serve not only to alter gene expression but also may enhance the evolutionary process in eukaryotes.In this E-book, original research and review articles that cover issues related to the role of DNA methylation, histone modifications, and small RNA in plant transgenerational epigenetic memory were published.The knowledge published on this topic may add new insight on the involvement of epigenetic factors in natural selection and environmental adaptation. This information may also help to generate a modeling system to study the epigenetic role in evolution.

Listing 1 - 10 of 28 << page
of 3
>>
Sort by