Narrow your search

Library

FARO (11)

KU Leuven (11)

LUCA School of Arts (11)

Odisee (11)

Thomas More Kempen (11)

Thomas More Mechelen (11)

UCLL (11)

VIVES (11)

Vlaams Parlement (11)

UGent (4)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2022 (3)

2021 (3)

2020 (3)

2019 (2)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Consideration of runouts by the evaluation of fatigue experiments
Author:
ISBN: 1000091208 3731509008 Year: 2019 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

In EC3, the fatigue life of a steel structure subjected to a cyclic load is estimated by its detail category. This category is based on the S-N, curves which are obtained by applying the Basquin model. Statistically, this model does not allow extrapolating the S-N curves in the HCF region, neither does it consider the runouts. This affects the fatigue life estimation when a structure bears loading in HCF. To overcome these deficiencies, a new method based on a Weibull distribution is applied.


Book
Fatigue and Fracture Behaviour of Additively Manufactured Mechanical Components
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.


Book
Advances in the Processing and Application of Polymer and Its Composites
Authors: --- --- --- ---
ISBN: 3036554149 3036554130 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book mainly focuses on the processing and applications of polymer and its composites. With the fast development of the petroleum industry, polymer materials have been widely utilized in our daily lives. The various processing methods of polymers determine the final properties and performance of products. In addition, the introduction of different fillers, including inorganic fillers, metal oxide, natural fibers, and so on, can increase the physical and chemical properties of polymer composites, which will further broaden their practical applications. Special attention will be paid to the type of processing methods and the functional fillers on the performance of polymer composites.


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.


Book
Architectural Structure
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue, “Architectural Structure,” aims to gather general advances in human-made constructions which simultaneously are driven by aesthetic and structural engineering considerations. This Special Issue brings together twelve contributions covering the following topics: analysis of architectural typologies; the study of the mechanical performance of structural materials, structural systems and components; and the proposal of techniques to evaluate the mechanical performance in existing structures and new construction techniques.

Keywords

recycled aggregate concrete --- block masonry --- compressive strength --- carbon emission --- stress–strain curves --- outrigger wall --- multiple openings --- deep beam --- stiffness --- shear strength --- tall building --- inverted multi tee --- prestressed concrete --- precast concrete --- structural performance --- flexural analysis --- self-compacting concrete --- non-destructive test methods --- ultrasonic pulse velocity test --- surface hardness test --- pull-out test --- maturity test --- within-test variability --- normal vibrated concrete --- concrete structures --- beams &amp --- girders --- torsion --- high-strength concrete --- prestressing --- traditional slabs --- ceramic-reinforced slabs --- shear response --- cyclic loading --- natural fiber-reinforced polymers --- NFRP --- computational design --- tailored fiber placement --- coreless filament winding --- rapid prototyping --- industry 4.0 --- lightweight structure --- Geopolymer --- Alkali activated --- tensile strength --- deformability --- experimental study --- analytical model --- reinforced concrete --- beams --- fly ash alkali activated --- bending --- thin-walled I-section --- continuous beam --- local buckling --- longitudinal stress variation --- design ultimate resistance of the cross-section --- Rudolf Steiner --- anthroposophy --- architecture --- Goetheanum --- double-steel-concrete composite shear walls --- axial and bending capacity --- failure characteristic --- n/a --- stress-strain curves


Book
Resilience and Sustainability of Civil Infrastructures under Extreme Loads
Authors: --- --- ---
ISBN: 3039214020 3039214012 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There are many regions worldwide which are susceptible to extreme loads such as earthquakes. These can cause loss of life and adverse impacts on civil infrastructures, the environment, and communities. A series of methods and measures have been used to mitigate the effects of these extreme loads. The adopted approaches and methods must enable civil structures to be resilient and sustainable. Therefore, to reduce damage and downtime in addition to protecting life and promoting safety, new resilient structure technologies must be proposed and developed. This special issue book focuses on methods of enhancing the sustainability and resilience of civil infrastructures in the event of extreme loads (e.g., earthquakes). This book contributes proposals of and theoretical, numerical, and experimental research on new and resilient civil structures and their structural performance under extreme loading events. These works will certainly play a significant role in promoting the application of new recoverable structures. Moreover, this book also introduces some case studies discussing the implementation of low-damage structural systems in buildings as well as articles on the development of design philosophies and performance criteria for resilient buildings and new sustainable communities.

Keywords

artificial neural network --- corrosion --- mined-out region --- finite element --- column-top isolation --- pseudodynamic test --- seismic performance --- sustainability prediction --- shear performance --- nonlinear time-history analysis --- shaking table test --- civil infrastructures --- angle section --- seismic connection detail --- cyclic loading test --- extreme loads --- sudden column removal --- flow --- water supply networks --- displacement response spectrum --- cold-formed steel composite shear wall building --- mitigation --- probabilistic framework --- nonlinearity --- optimized section --- corporation --- GM selection --- seismic damage --- natural hazards --- analysis --- spectrum variance --- viscous damper --- Great East Japan Earthquake --- OpenFresco --- Brazier flattening --- substructure --- damage --- model-based --- tapered cross section --- liquefaction --- measurement --- NDE --- settlement --- seismic behavior --- resilience --- hybrid damper --- numerical simulation --- structural response estimates --- probabilistic --- energy-based approximate analysis --- damping effect --- cold-formed steel structure --- silt --- ground motion --- boundary technique --- energy dissipative devices --- reinforced concrete --- cyclic reversal test --- ground improvement --- simplified modeling method --- beam --- girder --- integration algorithm --- force-displacement control --- reinforced concrete frames --- mid-rise --- intermediate column --- time-frequency energy distribution --- single-layer reticulated dome --- structural robustness --- precast slab --- chloride ingress --- dynamic model --- Brazier effect --- earthquake --- sustainability --- carbonation --- replaceable coupling beam --- railway construction --- concrete --- variational method --- shear wall --- progressive collapse --- abnormal loads --- recovery --- earthquakes --- resilience-based design --- disaster --- OpenSees --- seismic analysis --- response surface method --- subway station --- ratcheting effect --- matching pursuit decomposition --- hybrid simulation --- subway induced vibration --- dynamic structural analysis --- numerical simulations --- structural sensitivity --- inflection point --- system restoration --- infinite element boundary --- simulation model --- Monte Carlo simulation --- nonlinear response


Book
Wood Properties and Processing
Author:
ISBN: 3039288229 3039288210 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wood-based materials are CO2-neutral, renewable, and considered to be environmentally friendly. The huge variety of wood species and wood-based composites allows a wide scope of creative and esthetic alternatives to materials with higher environmental impacts during production, use and disposal. Quality of wood is influenced by the genetic and environmental factors. One of the emerging uses of wood are building and construction applications. Modern building and construction practices would not be possible without use of wood or wood-based composites. The use of composites enables using wood of lower quality for the production of materials with engineered properties for specific target applications. Even more, the utilization of such reinforcing particles as carbon nanotubes and nanocellulose enables development of a new generation of composites with even better properties. The positive aspect of decomposability of waste wood can turn into the opposite when wood or wood-based materials are exposed to weathering, moisture oscillations, different discolorations, and degrading organisms. Protective measures are therefore unavoidable for many outdoor applications. Resistance of wood against different aging factors is always a combined effect of toxic or inhibiting ingredients on the one hand, and of structural, anatomical, or chemical ways of excluding moisture on the other.

Keywords

neural network --- Pinus massoniana Lamb. --- intra-ring variation --- relative humidity --- ultimate state --- nondestructive assessment --- machinability --- stiffness --- wood based composites --- bamboo --- poplar seedlings --- thinning --- blue staining fungi --- tropical woods --- compression --- bending stiffness --- wooden windows --- ultrasonic wave velocity measurement --- glued lamella --- three-point bending --- wood properties --- technological and product innovations --- structural changes --- non-destructive testing --- hardwoods --- brittleness --- green larch --- root-collar diameter --- FTIR --- material preference --- cooling tower --- tensile modulus --- strength grading --- immigrants --- weight of a user --- density --- flexible chair --- predictive performance --- heat treatment --- modulus of elasticity --- orthotropic --- acoustic resonance --- building material --- CIEL*a*b* system --- deflection at the modulus of rupture --- marketing --- bamboo grid packing --- fungi --- minimal curve radius --- European hardwoods --- cyclic loading --- chemical composition --- laminated wood --- volume yield --- tensile strength --- artificial weathering --- glulam --- dynamic modulus of elasticity --- colour changes --- modulus of elasticity (MOE) --- coefficient of wood bendability --- urban housing --- Resistance to Impact Milling (RIM) --- nondestructive testing --- Coniophora puteana --- roughness --- brown rot --- wood --- phenol formaldehyde resin --- wood-processing industry performance --- elemental composition --- natural weathering --- longitudinal stress wave velocity --- mechanical properties --- aluminium reinforcements --- chemical changes --- colour change --- High-Energy Multiple Impact (HEMI)–test --- plantation timber --- fiber-managed hardwoods --- cooling packing --- wood mechanical properties --- flexural rigidity --- moisture content --- ultrasonic speed --- color --- elastic constants --- Douglas-fir --- mixed-effects hierarchical linear models --- wood impregnation --- dynamic strength --- microfibril angle --- silviculture --- low quality round wood --- Eucalyptus --- hybrid beams --- end-product-based fiber attribute determinates --- high frequency drying --- infrared spectroscopy --- building culture background --- lumber --- Euler-Bernoulli --- ultrasound --- cell-wall mechanics --- colour --- deflection at the limit of proportionality


Book
Advanced Composites : From Materials Characterization to Structural Application
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.

Keywords

steel fiber reinforced concrete (SFRC) --- slender beams --- cyclic loading --- hysteretic response --- failure mode --- tests --- aluminum honeycomb --- deformation modes --- shock wave --- counter-intuitive behavior --- energy distribution --- acoustic stealth --- acoustic coating --- passive sound absorption --- active sound absorption --- acoustic characteristics of a submarine --- finite element method (FEM) --- slip --- group studs --- composite beam --- accelerated bridge construction --- steel fiber --- in situ amorphous coating --- laser surface remelting --- Ti-based alloy --- pipeline steel --- toughness --- cleavage unit --- crack propagation --- misorientation angles --- CFRP laminate --- mechanically fastened joints --- gradient material model --- dissimilar welding materials --- electron-beam welding --- fracture morphology --- fracture toughness --- crack deflection --- three-point bending test --- irreversible thermochromic --- cement composite --- manganese violet --- temperature indication --- heat monitoring --- cold-formed profiles --- high-strength steel --- local deformations --- bending test --- load-bearing capacity --- FRP --- concrete --- damage --- synergy --- strengthening --- finite element analysis --- composite material --- tribology --- vibrations --- resonance zone --- aluminum alloys --- composite materials --- epoxy resins --- power cables --- transmission lines --- CFRP --- NSM --- bond behavior --- structural behavior --- material characterization --- numerical modeling --- reinforced concrete --- steel fiber-reinforced concrete (SFRC) --- tension softening --- tension stiffening --- finite element (FE) analysis --- smeared crack model --- constitutive analysis --- residual stresses --- flexural behavior --- numerical analysis --- cyclic tests --- direct tension tests --- residual stiffness --- shear --- flexure --- shape memory alloys --- thermal environment --- composite laminates --- sound radiation --- 3D warp interlock fabric --- warp yarn interchange ratio --- mechanical test --- mechanical characterization --- fiber-reinforced composite --- soft body armor --- para-aramid fiber --- metal matrix composites --- SiC --- AZ91 --- magnesium alloy --- Cu-Cr system --- mechanical alloying --- solid solubility extension --- structural evolution --- thermodynamic --- n/a


Book
Recent Advances in the Design of Structures with Passive Energy Dissipation Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.

Keywords

stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures


Book
Coastal Geohazard and Offshore Geotechnics
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering.

Keywords

wave motion --- offshore deposits --- seabed response --- FEM --- pore pressure --- wave-current-seabed interaction --- RANS equations --- k-ε model --- current velocity --- seabed liquefaction --- liquefaction --- lateral displacement --- response surface method (RSM) --- artificial neural network (ANN) --- wave action --- silty sand --- seepage flow --- soil erosion --- pore-pressure accumulation --- three-phase soil model --- immersed tunnel --- trench --- numerical study --- porous seabed --- pumping well test --- groundwater fluctuation --- stratum deformation --- micro-confined aquifer --- wave–current–seabed interaction --- Reynolds-Averaged Navier-Stokesequations --- buried pipeline --- k-ε turbulence model --- oscillatory liquefaction --- wave-soil-pipeline interactions --- meshfree model --- local radial basis functions collocation method --- hydrate-bearing sediments --- damage statistical constitutive model --- multi-field coupling --- wellbore stability --- bridge scour --- identification --- ambient vibration --- field application --- natural frequency --- mode shape --- superstructure --- cable-stayed bridge --- Principal stress rotation --- dynamic loading --- wave (current)-induced soil response --- open-ended pile --- soil plug --- offshore wind turbines --- lateral cyclic loading --- model test --- discrete element simulation --- rock-socketed piles --- monopiles --- impedances --- dynamic responses --- buoyancy --- bottom-supported foundation --- field test --- numerical analysis --- giant submarine landslides --- shelf break --- South China Sea --- Himalayan orogeny --- repeated submarine landslides --- coastal-embankment slope --- stability --- unsaturated soil --- multilayered --- matric suction --- random searching algorithm --- rainfall infiltration --- scour --- soft clay --- monopile --- stress history --- hypoplastic model --- submarine pipeline --- dense seabed foundation --- seismic dynamics --- resonance of submarine pipeline --- FSSI-CAS 2D --- n/a

Listing 1 - 10 of 11 << page
of 2
>>
Sort by