Narrow your search

Library

UCLL (4)

VUB (4)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UGent (3)

VIVES (3)

ULiège (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2016 (1)

2002 (2)

2000 (1)

Listing 1 - 4 of 4
Sort by

Book
The Bobath concept in adult neurology
Authors: ---
ISBN: 9783131454522 3131454520 Year: 2016 Publisher: Stuttgart ; New York Thieme

Loading...
Export citation

Choose an application

Bookmark

Abstract

The pioneering text by internationally renowned Bobath instructor and therapist Bente Gjelsvik is now in a revised and expanded second edition. The Bobath Concept in Adult Neurology, Second Edition, is updated with the latest theoretical insights, research literature, and clinical guidelines to provide an evidence-based, practice-oriented guide to the assessment and treatment of patients with lesions of the central nervous system. Bridging the gap between theoretical assumptions and everyday therapy practice, the book offers an understanding of the interaction between the central nervous system, the musculoskeletal system, movement, and function, and helps readers apply their knowledge to form hypotheses through clinical reasoning in the rehabilitation of adults with neurological conditions.Highlights:•Completely revised case histories chapter with entirely new patient cases•Key coverage of recent clinical trials and research studies•Restructured and reorganized chapters for a more logical presentation of content•Concise descriptions of the central nervous system and the neuro-musculo-skeletal systems, motor control, and neural and muscular plasticity•Useful discussion of the International Classification of Functioning, Disability, and Health as a basis for assessment•More than 200 lucid photographs and illustrations aid in quick grasp of the materialThe new edition of this seminal volume contains the theoretical information, clinical details, and practical examples of the Bobath Concept for the management of neurological disability. It is a must-read for physical therapists and occupational therapists at all levels who seek the best assessment and treatment outcomes for neurologically impaired individuals. (Bron: website uitgever)

Keywords

Central Nervous System Diseases --- Neurophysiology --- Physical Therapy Modalities --- Neuronal Plasticity --- Central nervous system --- Neurodevelopmental treatment --- Physical therapy --- Neuroplasticity --- Système nerveux central --- Méthode de Bobath --- Physiothérapie --- Plasticité neuronale --- rehabilitation --- physiopathology --- methods --- Diseases --- Patients --- Rehabilitation --- Maladies --- Réadaptation --- neurofysiologie --- Bobathconcept --- cerebrovasculaire aandoeningen --- CVA --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Neurological Physiotherapy --- Neurophysiotherapy --- Physical Therapy Techniques --- Physiotherapy (Techniques) --- Modalities, Physical Therapy --- Modality, Physical Therapy --- Physical Therapy Modality --- Physical Therapy Technique --- Physiotherapies (Techniques) --- Physiotherapy, Neurological --- Techniques, Physical Therapy --- Postoperative Care --- Physical Therapist Assistants --- Système nerveux central --- Méthode de Bobath --- Physiothérapie --- Plasticité neuronale --- Réadaptation --- Group Physiotherapy --- Group Physiotherapies --- Physiotherapies, Group --- Physiotherapy, Group --- Physical Therapy Modalities. --- Neuronal Plasticity. --- rehabilitation. --- physiopathology. --- methods. --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain --- Physical Therapy --- Physical Therapies --- Therapy, Physical

The dynamic neuron
Author:
ISBN: 0262194732 0262283980 0585442592 0262264676 9780262283984 9780585442594 9780262194730 9780262264679 Year: 2002 Publisher: Cambridge, Mass. MIT Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

The traditional model of synapses as fixed structures has been replaced by a dynamic one in which synapses are constantly being deleted and replaced. This book, written by a leading researcher on the neurochemistry of schizophrenia, integrates material from neuroscience and cell biology to provide a comprehensive account of our current knowledge of the neurochemical basis of synaptic plasticity. The book presents the evidence for synaptic plasticity, an account of the dendritic spine and the glutamate synapse with a focus on redox mechanisms, and the biochemical basis of the Hebbian synapse. It discusses the role of endocytosis, special proteins, and local protein synthesis. Additional topics include volume transmission, arachidonic acid signaling, hormonal modulation, and psychological stress. Finally, the book considers pharmacological and clinical implications of current research, particularly with reference to schizophrenia and Alzheimer's disease.

Keywords

Tissues --- Nervous System Physiological Processes --- Nervous System --- Nervous System Physiological Phenomena --- Anatomy --- Musculoskeletal and Neural Physiological Phenomena --- Phenomena and Processes --- Neuronal Plasticity --- Nerve Tissue --- Human Anatomy & Physiology --- Health & Biological Sciences --- Neuroscience --- Musculoskeletal and Neural Physiological Concepts --- Musculoskeletal and Neural Physiological Phenomenon --- Musculoskeletal and Neural Physiology --- Anatomies --- Nervous System Physiological Concepts --- Nervous System Physiological Phenomenon --- Nervous System Physiological Process --- Physiology, Nervous System --- Nervous System Physiologic Processes --- Nervous System Physiology --- System Physiology, Nervous --- Nervous Systems --- System, Nervous --- Systems, Nervous --- Tissue --- Nervous Tissue --- Nerve Tissues --- Nervous Tissues --- Tissue, Nerve --- Tissue, Nervous --- Tissues, Nerve --- Tissues, Nervous --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- physiology --- Cell Plasticity --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain --- Neuroplasticity. --- Neurochemistry. --- Biochemistry --- Neurosciences --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology

Advances in synaptic plasticity
Authors: --- ---
ISBN: 0262024608 0262515237 026226790X 0585165742 9780262267908 9780262024600 9780262515238 9780585165745 Year: 2000 Publisher: Cambridge, Massachusetts : London : The MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, a follow-up to the editors' Synaptic Plasticity (MIT Press,1993), reports on the most recent trends in the field. The levels of analysis range from molecular to cellular and network, the unifying theme being the nature of the relationships between synaptic plasticity and information processing and storage.Many neurons exhibit plasticity; that is, they can change structurally or functionally, often in a lasting way. Plasticity is evident in such diverse phenomena as learning and memory, brain development, drug tolerance, sprouting of axon terminals after a brain lesion, and various cellular forms of activity-dependent synaptic plasticity such as long-term potentiation and long-term depression. This book, a follow-up to the editors' Synaptic Plasticity (MIT Press, 1993), reports on the most recent trends in the field. The levels of analysis range from molecular to cellular and network, the unifying theme being the nature of the relationships between synaptic plasticity and information processing and storage.ContributorsYael Amitai, Michel Baudry, Theodore W. Berger, Pierre-Alain Buchs, A.K. Butler, Franck A. Chaillan, Gilbert A. Chauvet, Marie-Francoise Chesselet, Barry W. Connors, Taraneh Ghaffari, Jay R. Gibson, Ziv Gil, Michel Khrestchatisky, Dietmar Kuhl, Carole E. Landisman, Gilles Laurent, Jim-Shih Liaw, David J. Linden, Katrina MacLeod, Henry Markram, W.V. Morehouse, Dominique Muller, J.A. Napieralski, Santiago Rivera, Francois S. Roman, Bernard Soumireu-Mourat, Oswald Steward, Mark Stopfer, F.G. Szele, Richard F. Thompson, Nicolas Toni, Bernard Truchet, Misha Tsodyks, K. Uryu, Ascher Uziel, Christopher S. Wallace, Yun Wang, Michael Wehr, Paul F. Worley, Xiaping Xie

Keywords

Synapses --- Synapse --- Cell Components --- Cell Component --- Cellular Structure --- Component, Cell --- Components, Cell --- Structure, Cellular --- Structures, Cellular --- Cell Membrane Structure --- Membrane Structure, Cell --- Membrane Structures, Cell --- Structure, Cell Membrane --- Structures, Cell Membrane --- Cell Junctions --- Cell Junction --- Intercellular Junction --- Junction, Cell --- Junction, Intercellular --- Junctions, Cell --- Junctions, Intercellular --- Nervous System Physiological Processes --- Intercellular Junctions --- Nervous System --- Anatomy --- Cell Membrane Structures --- Nervous System Physiological Phenomena --- Musculoskeletal and Neural Physiological Phenomena --- Cell Membrane --- Phenomena and Processes --- Cellular Structures --- Cells --- Neuronal Plasticity --- Human Anatomy & Physiology --- Health & Biological Sciences --- Neuroscience --- Synaptic Transmission --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Cell --- Cell Biology --- Cytoplasmic Membrane --- Plasma Membrane --- Cell Membranes --- Cytoplasmic Membranes --- Membrane, Cell --- Membrane, Cytoplasmic --- Membrane, Plasma --- Membranes, Cell --- Membranes, Cytoplasmic --- Membranes, Plasma --- Plasma Membranes --- Membranes --- Musculoskeletal and Neural Physiological Concepts --- Musculoskeletal and Neural Physiological Phenomenon --- Musculoskeletal and Neural Physiology --- Nervous System Physiological Concepts --- Nervous System Physiological Phenomenon --- Nervous System Physiological Process --- Physiology, Nervous System --- Nervous System Physiologic Processes --- Nervous System Physiology --- System Physiology, Nervous --- Anatomies --- Nervous Systems --- System, Nervous --- Systems, Nervous --- Cell Communication --- physiology --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain --- Neuroplasticity. --- NEUROSCIENCE/General --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology --- Cerveau --- Système nerveux --- Plasticité neuronale.

Spiking neuron models : single neurons, populations, plasticity
Authors: ---
ISBN: 1107133424 051107817X 9786613329356 0511561644 0511815700 0511643306 1283329352 0511203756 0511076606 9780511078170 9780511076602 0511075065 9780511075063 9780511815706 9781283329354 9780511203756 0521813840 9780521813846 0521890799 9780521890793 Year: 2002 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.

Keywords

Computational neuroscience. --- Neural networks (Neurobiology). --- Neurons. --- Neuroplasticity. --- Neurons --- Neuronal Plasticity --- Nerve Net --- Models, Neurological --- Nervous System Physiological Processes --- Models, Biological --- Nervous System --- Cells --- Models, Theoretical --- Anatomy --- Nervous System Physiological Phenomena --- Musculoskeletal and Neural Physiological Phenomena --- Investigative Techniques --- Phenomena and Processes --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Neuroscience --- Human Anatomy & Physiology --- Health & Biological Sciences --- Investigative Technics --- Investigative Technic --- Investigative Technique --- Technic, Investigative --- Technics, Investigative --- Technique, Investigative --- Techniques, Investigative --- Musculoskeletal and Neural Physiological Concepts --- Musculoskeletal and Neural Physiological Phenomenon --- Musculoskeletal and Neural Physiology --- Neural Networks (Anatomic) --- Nerve Nets --- Net, Nerve --- Nets, Nerve --- Network, Neural (Anatomic) --- Networks, Neural (Anatomic) --- Neural Network (Anatomic) --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Brain Plasticity --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Brain Plasticities --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Brain --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Brain --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Nervous System Physiological Concepts --- Nervous System Physiological Phenomenon --- Nervous System Physiological Process --- Physiology, Nervous System --- Nervous System Physiologic Processes --- Nervous System Physiology --- System Physiology, Nervous --- Anatomies --- Experimental Model --- Experimental Models --- Mathematical Model --- Model, Experimental --- Models (Theoretical) --- Models, Experimental --- Models, Theoretic --- Theoretical Study --- Mathematical Models --- Model (Theoretical) --- Model, Mathematical --- Model, Theoretical --- Models, Mathematical --- Studies, Theoretical --- Study, Theoretical --- Theoretical Model --- Theoretical Models --- Theoretical Studies --- Computer Simulation --- Systems Theory --- Cell --- Cell Biology --- Nervous Systems --- System, Nervous --- Systems, Nervous --- Biological Model --- Biological Models --- Model, Biological --- Models, Biologic --- Biologic Model --- Biologic Models --- Model, Biologic --- Model, Neurological --- Neurologic Model --- Neurological Model --- Neurological Models --- Neurologic Models --- Model, Neurologic --- Models, Neurologic --- Nerve Cells --- Cell, Nerve --- Cells, Nerve --- Nerve Cell --- Neuron --- physiology --- Computational neuroscience --- Neural networks (Neurobiology) --- 681.3*I51 --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology --- Nerve cells --- Neurocytes --- Nervous system --- Biological neural networks --- Nets, Neural (Neurobiology) --- Networks, Neural (Neurobiology) --- Neural nets (Neurobiology) --- Cognitive neuroscience --- Neurobiology --- Neural circuitry --- Computational neurosciences --- Computational biology --- Neurosciences --- 681.3*I51 Models: deterministic; fuzzy set; geometric; statistical; structural (Patternrecognition) --- Models: deterministic; fuzzy set; geometric; statistical; structural (Patternrecognition)

Listing 1 - 4 of 4
Sort by