Narrow your search

Library

ULB (6)

ULiège (6)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

VIVES (5)

UGent (1)


Resource type

book (6)


Language

English (6)


Year
From To Submit

2010 (6)

Listing 1 - 6 of 6
Sort by

Book
Toxic Plant Proteins
Authors: ---
ISBN: 3642263771 3642121756 1299335721 3642121764 Year: 2010 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many plants produce enzymes collectively known as ribosome-inactivating proteins (RIPs). RIPs catalyze the removal of an adenine residue from a conserved loop in the large ribosomal RNA. The adenine residue removed by this depurination is crucial for the binding of elongation factors. Ribosomes modified in this way are no longer able to carry out protein synthesis. Most RIPs exist as single polypeptides (Type 1 RIPs) which are largely non-toxic to mammalian cells because they are unable to enter them and thus cannot reach their ribosomal substrate. In some instances, however, the RIP forms part of a heterodimer where its partner polypeptide is a lectin (Type 2 RIPs). These heterodimeric RIPs are able to bind to and enter mammalian cells. Their ability to reach and modify ribosomes in target cells means these proteins are some of the most potently cytotoxic poisons found in nature, and are widely assumed to play a protective role as part of the host plant’s defenses. RIPs are able to further damage target cells by inducing apoptosis. In addition, certain plants produce lectins lacking an RIP component but which are also cytotoxic. This book focuses on the structure/function and some potential applications of these toxic plant proteins.


Book
Paraoxonases in Inflammation, Infection, and Toxicology
Authors: ---
ISBN: 1607613492 9786612831379 1607613506 1282831372 Year: 2010 Publisher: Totowa, NJ : Humana Press : Imprint: Humana,

Loading...
Export citation

Choose an application

Bookmark

Abstract

*** This series does not include back cover copy. ***.


Book
The Rho GTPases in Cancer
Author:
ISBN: 1441911103 144191112X 9786612831768 1441911111 1282831763 1489982868 Year: 2010 Publisher: New York, NY : Springer New York : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Rho GTPases in Cancer is the first volume to collect and summarize the current understanding of the Rho GTPases and their involvement in the progression of human cancer. The critical role of the Rho GTPases, their regulatory proteins, and their effectors in cancer progression has become increasingly evident over the past decade. As translational research increases on these proteins, their importance as keystone molecules in vital cellular process is highlighted. Thus, these molecules represent a major class of potential therapeutic targets that could be exploited clinically. This aspect of Rho GTPase biology is developing, therefore the contents of The Rho GTPases in Cancer should prove of interest to clinicians and members of the cancer research community wishing to develop new treatments for cancer.


Book
Ribonuclease P
Authors: ---
ISBN: 1441911413 1461425735 9786612831577 1282831577 1441911421 Year: 2010 Publisher: New York : Springer Science,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ribonuclease P (RNaseP), a ribonucleoprotein, is an essential tRNA processing enzyme found in all living organisms. Since its discovery almost 40 years ago, research on RNase P has led to the discovery of the catalytic properties of RNA, and of the only known, naturally occurring RNA enzymes, RNase P catalytic RNA. The description of the catalytic properties of RNA has provided fundamental insight into the RNA world and these catalytic properties are being harnessed as therapeutic and prevention strategies for acquired and inherited diseases. Ribonuclease P is the first book to provide a comprehensive collection covering all aspects of current research on RNase P. The topics include kinetic and structural analysis, mechanism of catalysis, and its regulation and biogenesis in prokaryotes, eukaryotes, and organelles. Furthermore, research progresses on developing RNase P as a potential drug target for antimicrobial development and as a gene-targeting tool for anti-infective and anticancer therapy are also included. This book should be of general interests to molecular biologists and biochemists in both the academic section and pharmaceutical industry.


Book
RNA Exosome
Author:
ISBN: 1441978402 1441978410 Year: 2010 Publisher: New York, NY : Springer New York : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.


Book
Regulation of vascular smooth muscle function
Author:
ISBN: 161504180X 1615041818 Year: 2010 Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vascular smooth muscle (VSM) constitutes most of the tunica media in blood vessels and plays an important role in the control of vascular tone. Ca2+ is a major regulator of VSM contraction and is strictly regulated by an intricate system of Ca2+ mobilization and Ca2+ homeostatic mechanisms. The interaction of a physiological agonist with its plasma membrane receptor stimulates the hydrolysis of membrane phospholipids and increases the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates Ca2+ release from the intracellular stores in the sarcoplasmic reticulum. Agonists also stimulate Ca2+ influx from the extracellular space via voltage-gated, receptor-operated, and store-operated channels. Ca2+ homeostatic mechanisms tend to decrease the intracellular free Ca2+ concentration ([Ca2+]i) by activating Ca2+ extrusion via the plasmalemmal Ca2+ pump and the Na+/Ca2+ exchanger and the uptake of excess Ca2+ by the sarcoplasmic reticulum and possibly the mitochondria. A threshold increase in [Ca2+]i activates Ca2+-dependent myosin light chain (MLC) phosphorylation, stimulates actin-myosin interaction, and initiates VSM contraction. The agonist-induced maintained increase in DAG also activates specific protein kinase C (PKC) isoforms, which in turn cause phosphorylation of cytoplasmic substrates that increase the contractile myofilaments force sensitivity to Ca2+ and thereby enhance VSM contraction. Agonists could also activate Rho kinase (ROCK), leading to inhibition of MLC phosphatase and further enhancement of the myofilaments force sensitivity to Ca2+. The combined increases in [Ca2+]i, PKC and ROCK activity cause significant vasoconstriction and could also stimulate VSM hypertrophy and hyperplasia. The protracted and progressive activation of these processes could lead to pathological vascular remodeling and vascular disease.

Keywords

Muscle contraction. --- Vascular diseases. --- Vascular smooth muscle. --- Ion Channels --- Muscle Proteins --- Microfilament Proteins --- Hemodynamics --- Muscle, Smooth --- Molecular Motor Proteins --- Cardiovascular Diseases --- Blood Vessels --- Diseases --- Muscles --- Contractile Proteins --- Cardiovascular Physiological Processes --- Cardiovascular System --- Adenosine Triphosphatases --- Membrane Glycoproteins --- Biopolymers --- Membrane Transport Proteins --- Cytoskeletal Proteins --- Polymers --- Tissues --- Carrier Proteins --- Acid Anhydride Hydrolases --- Proteins --- Cardiovascular Physiological Phenomena --- Membrane Proteins --- Anatomy --- Musculoskeletal System --- Amino Acids, Peptides, and Proteins --- Circulatory and Respiratory Physiological Phenomena --- Macromolecular Substances --- Hydrolases --- Chemicals and Drugs --- Phenomena and Processes --- Enzymes --- Enzymes and Coenzymes --- Myosins --- Muscle, Smooth, Vascular --- Vasoconstriction --- Calcium Channels --- Vascular Diseases --- Human Anatomy & Physiology --- Health & Biological Sciences --- Physiology --- Vascular resistance. --- Blood pressure. --- Vascular smooth muscle --- Physiology. --- physiology. --- Signal transduction --- Calcium --- Blood pressure --- AngII, angiotensin II --- ATP, adenosine triphosphate --- CPI-17, PKC-potentiated phosphatase inhibitor protein-17 kDa --- CAM, calmodulin --- DAG, diacylglycerol --- ET-1, endothelin --- IP3, inositol 1,4,5-trisphosphate --- MAPK, mitogen-activated protein kinase --- MARCKs, myristoylated alanine-rich C-kinase substrate --- MEK, MAPK kinase --- MLC, myosin light chain --- NCX, Na+-Ca2+ exchanger --- PDBu, phorbol 12,13-dibutyrate; PIP2, phosphatidylinositol 4,5-bisphosphate --- PKC, protein kinase C --- PMA, phorbol myristate acetate --- RACKs, receptors for activated C-kinase --- ROCK, Rho-kinase --- VSMC, vascular smooth muscle cell

Listing 1 - 6 of 6
Sort by