Narrow your search

Library

Odisee (13)

Thomas More Kempen (12)

Thomas More Mechelen (12)

UCLL (12)

VIVES (12)

KU Leuven (11)

ULB (9)

ULiège (9)

LUCA School of Arts (5)

FARO (3)

More...

Resource type

book (15)


Language

English (14)

French (1)


Year
From To Submit

2015 (15)

Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Book
Biotechnologies blanches et biologie de synthese
Author:
ISBN: 2759818853 9782759818853 Year: 2015 Publisher: Paris EDP Sciences

Loading...
Export citation

Choose an application

Bookmark

Abstract

La Biologie de synthèse apparait constamment sur les listes des technologies dites « d’avenir » dans le champ très large de l’application des sciences du vivant. L’Académie des technologies, dont plusieurs membres participent ou ont participé à ces développements, se devait d’explorer ce thème. Le sujet est large et l’Académie s’est focalisée sur les applications à visées industrielles, dans le secteur dit des « biotechnologies blanches ». Ce rapport de l’Académie des technologies fait le point de l’utilisation de ces développements technologiques par l’industrie au niveau mondial, avec un éclairage particulier sur la situation en France. Elle note en particulier que si la R&D française tient bien son rang, tant au niveau de la recherche académique qu’au niveau des start-ups, les investissements industriels tardent à se réaliser dans notre pays pour des raisons d’environnement réglementaire et financier.


Book
Synthetic biology : engineering complexity and refactoring cell capabilities
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibit useful biological functions with different levels of complexity. One such case is metabolic engineering, where, with the advent of genetic and protein engineering, by supplying cells with chemically synthesized non-natural amino acids and sugars as new building blocks, it is now becoming feasible to introduce novel physical and chemical functions and properties into biological entities. The rules of how complex behaviors arise, however, are not yet well understood. For instance, instead of considering cells as inert chassis in which synthetic devices could be easily operated to impart new functions, the presence of these systems may impact cell physiology with reported effects on transcription, translation, metabolic fitness and optimal resource allocation. The result of these changes in the chassis may be failure of the synthetic device, unexpected or reduced device behavior, or perhaps a more permissive environment in which the synthetic device is allowed to function. While new efforts have already been made to increase standardization and characterization of biological components in order to have well known parts as building blocks for the construction of more complex devices, also new strategies are emerging to better understand the biological dynamics underlying the phenomena we observe. For example, it has been shown that the features of single biological components [i.e. promoter strength, ribosome binding affinity, etc] change depending on the context where the sequences are allocated. Thus, new technical approaches have been adopted to preserve single components activity, as genomic insulation or the utilization of prediction algorithms able to take biological context into account. There have been noteworthy advances for synthetic biology in clinical technologies, biofuel production, and pharmaceuticals production; also, metabolic engineering combined with microbial selection/adaptation and fermentation processes allowed to make remarkable progress towards bio-products formation such as bioethanol, succinate, malate and, more interestingly, heterologous products or even non-natural metabolites. However, despite the many progresses, it is still clear that ad hoc trial and error predominates over purely bottom-up, rational design approaches in the synthetic biology community. In this scenario, modelling approaches are often used as a descriptive tool rather than for the prediction of complex behaviors. The initial confidence on a pure reductionist approach to the biological world has left space to a new and deeper investigation of the complexity of biological processes to gain new insights and broaden the categories of synthetic biology. In this Research Topic we host contributions that explore and address two areas of Synthetic Biology at the intersection between rational design and natural complexity: (1) the impact of synthetic devices on the host cell, or "chassis" and (2) the impact of context on the synthetic devices. Particular attention will be given to the application of these principles to the rewiring of cell metabolism in a bottom-up fashion to produce non-natural metabolites or chemicals that should eventually serve as a substitute for petrol-derived chemicals, and, on a long-term view, to provide economical, ecological and ethical solutions to today’s energetic and societal challenges.


Book
Synthetic biology : engineering complexity and refactoring cell capabilities
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibit useful biological functions with different levels of complexity. One such case is metabolic engineering, where, with the advent of genetic and protein engineering, by supplying cells with chemically synthesized non-natural amino acids and sugars as new building blocks, it is now becoming feasible to introduce novel physical and chemical functions and properties into biological entities. The rules of how complex behaviors arise, however, are not yet well understood. For instance, instead of considering cells as inert chassis in which synthetic devices could be easily operated to impart new functions, the presence of these systems may impact cell physiology with reported effects on transcription, translation, metabolic fitness and optimal resource allocation. The result of these changes in the chassis may be failure of the synthetic device, unexpected or reduced device behavior, or perhaps a more permissive environment in which the synthetic device is allowed to function. While new efforts have already been made to increase standardization and characterization of biological components in order to have well known parts as building blocks for the construction of more complex devices, also new strategies are emerging to better understand the biological dynamics underlying the phenomena we observe. For example, it has been shown that the features of single biological components [i.e. promoter strength, ribosome binding affinity, etc] change depending on the context where the sequences are allocated. Thus, new technical approaches have been adopted to preserve single components activity, as genomic insulation or the utilization of prediction algorithms able to take biological context into account. There have been noteworthy advances for synthetic biology in clinical technologies, biofuel production, and pharmaceuticals production; also, metabolic engineering combined with microbial selection/adaptation and fermentation processes allowed to make remarkable progress towards bio-products formation such as bioethanol, succinate, malate and, more interestingly, heterologous products or even non-natural metabolites. However, despite the many progresses, it is still clear that ad hoc trial and error predominates over purely bottom-up, rational design approaches in the synthetic biology community. In this scenario, modelling approaches are often used as a descriptive tool rather than for the prediction of complex behaviors. The initial confidence on a pure reductionist approach to the biological world has left space to a new and deeper investigation of the complexity of biological processes to gain new insights and broaden the categories of synthetic biology. In this Research Topic we host contributions that explore and address two areas of Synthetic Biology at the intersection between rational design and natural complexity: (1) the impact of synthetic devices on the host cell, or "chassis" and (2) the impact of context on the synthetic devices. Particular attention will be given to the application of these principles to the rewiring of cell metabolism in a bottom-up fashion to produce non-natural metabolites or chemicals that should eventually serve as a substitute for petrol-derived chemicals, and, on a long-term view, to provide economical, ecological and ethical solutions to today’s energetic and societal challenges.


Book
BioBuilder : Synthetic biology in the lab
Authors: --- --- ---
ISBN: 1491904291 9781491904299 Year: 2015 Publisher: Beijing Boston O'Reilly

Loading...
Export citation

Choose an application

Bookmark

Abstract

"[P]rovides open-access, modular, hands-on lessons in synthetic biology for secondary and post-secondary classrooms and laboratories"--Page [4] cover.


Book
Synthetic biology : engineering complexity and refactoring cell capabilities
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibit useful biological functions with different levels of complexity. One such case is metabolic engineering, where, with the advent of genetic and protein engineering, by supplying cells with chemically synthesized non-natural amino acids and sugars as new building blocks, it is now becoming feasible to introduce novel physical and chemical functions and properties into biological entities. The rules of how complex behaviors arise, however, are not yet well understood. For instance, instead of considering cells as inert chassis in which synthetic devices could be easily operated to impart new functions, the presence of these systems may impact cell physiology with reported effects on transcription, translation, metabolic fitness and optimal resource allocation. The result of these changes in the chassis may be failure of the synthetic device, unexpected or reduced device behavior, or perhaps a more permissive environment in which the synthetic device is allowed to function. While new efforts have already been made to increase standardization and characterization of biological components in order to have well known parts as building blocks for the construction of more complex devices, also new strategies are emerging to better understand the biological dynamics underlying the phenomena we observe. For example, it has been shown that the features of single biological components [i.e. promoter strength, ribosome binding affinity, etc] change depending on the context where the sequences are allocated. Thus, new technical approaches have been adopted to preserve single components activity, as genomic insulation or the utilization of prediction algorithms able to take biological context into account. There have been noteworthy advances for synthetic biology in clinical technologies, biofuel production, and pharmaceuticals production; also, metabolic engineering combined with microbial selection/adaptation and fermentation processes allowed to make remarkable progress towards bio-products formation such as bioethanol, succinate, malate and, more interestingly, heterologous products or even non-natural metabolites. However, despite the many progresses, it is still clear that ad hoc trial and error predominates over purely bottom-up, rational design approaches in the synthetic biology community. In this scenario, modelling approaches are often used as a descriptive tool rather than for the prediction of complex behaviors. The initial confidence on a pure reductionist approach to the biological world has left space to a new and deeper investigation of the complexity of biological processes to gain new insights and broaden the categories of synthetic biology. In this Research Topic we host contributions that explore and address two areas of Synthetic Biology at the intersection between rational design and natural complexity: (1) the impact of synthetic devices on the host cell, or "chassis" and (2) the impact of context on the synthetic devices. Particular attention will be given to the application of these principles to the rewiring of cell metabolism in a bottom-up fashion to produce non-natural metabolites or chemicals that should eventually serve as a substitute for petrol-derived chemicals, and, on a long-term view, to provide economical, ecological and ethical solutions to today’s energetic and societal challenges.


Book
Advances in bioengineering
Authors: ---
ISBN: 9535121413 9535163787 Year: 2015 Publisher: IntechOpen

Loading...
Export citation

Choose an application

Bookmark

Abstract

The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques.


Book
Dual-use life science research and biosecurity in the 21st century : social, technical, policy, and ethical challenges
Authors: --- --- ---
ISBN: 9782889195688 Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In September 2011, scientists announced new experimental findings that would not only threaten the conduct and publication of influenza research, but would have significant policy and intelligence implications. The findings presented a modified variant of the H5N1 avian influenza virus (hereafter referred to as the H5N1 virus) that was transmissible via aerosol between ferrets. These results suggested a worrisome possibility: the existence of a new airborne and highly lethal H5N1 virus that could cause a deadly global pandemic. In response, a series of international discussions on the nature of dual-use life science arose. These discussions addressed the complex social, technical, political, security, and ethical issues related to dual-use research. This Research Topic will be devoted to contributions that explore this matrix of issues from a variety of case study and international perspectives.


Book
Bioengineering : A Conceptual Approach
Author:
ISBN: 3319107984 9783319107981 3319107976 9783319107974 Year: 2015 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores critical principles and new concepts in bioengineering, integrating the biological, physical and chemical laws and principles that provide a foundation for the field. Both biological and engineering perspectives are included, with key topics such as the physical-chemical properties of cells, tissues and organs; principles of molecules; composition and interplay in physiological scenarios; and the complex physiological functions of heart, neuronal cells, muscle cells and tissues. Chapters evaluate the emerging fields of nanotechnology, drug delivery concepts, biomaterials, and regenerative therapy. The leading individuals and events are introduced along with their critical research. Bioengineering: A Conceptual Approach is a valuable resource for professionals or researchers interested in understanding the central elements of bioengineering. Advanced-level students in biomedical engineering and computer science will also find this book valuable as a secondary textbook or reference.


Book
Synthetic Biology : Character and Impact
Authors: --- --- ---
ISBN: 9783319027838 3319027824 9783319027821 3319027832 Year: 2015 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads between basic and applied science. In closing, the requirements for a suitable regulatory framework are discussed. The book is intended as a source of information and orientation for researchers, students and practitioners in the natural sciences and technology assessment; for members of scientific and technological, governmental and funding institutions; and for members of the general public interested in essential information on the current status, prospects and implications of synthetic biology.

Keywords

Engineering. --- Biomedical Engineering. --- Genetic Engineering. --- Quality Control, Reliability, Safety and Risk. --- Energy, general. --- Genetic engineering. --- System safety. --- Biomedical engineering. --- Ingénierie --- Génie génétique --- Sécurité des systèmes --- Génie biomédical --- Health & Biological Sciences --- Biomedical Engineering --- Syntetisk biologi --- Synthetic biology. --- Bioengineering. --- Biological engineering --- Life science engineering --- Energy. --- Quality control. --- Reliability. --- Industrial safety. --- Biology --- Engineering --- Synthetic biology --- Bioengineering --- Biomedical Engineering and Bioengineering. --- Safety, System --- Safety of systems --- Systems safety --- Accidents --- Industrial safety --- Systems engineering --- Designed genetic change --- Engineering, Genetic --- Gene splicing --- Genetic intervention --- Genetic surgery --- Genetic recombination --- Biotechnology --- Transgenic organisms --- Clinical engineering --- Medical engineering --- Biophysics --- Medicine --- Prevention --- Industrial accidents --- Industries --- Job safety --- Occupational hazards, Prevention of --- Occupational health and safety --- Occupational safety and health --- Prevention of industrial accidents --- Prevention of occupational hazards --- Safety, Industrial --- Safety engineering --- Safety measures --- Safety of workers --- System safety --- Dependability --- Trustworthiness --- Conduct of life --- Factory management --- Industrial engineering --- Reliability (Engineering) --- Sampling (Statistics) --- Standardization --- Quality assurance --- Quality of products

Listing 1 - 10 of 15 << page
of 2
>>
Sort by