Narrow your search

Library

KU Leuven (4)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

VIVES (3)

ULiège (2)

UGent (1)

ULB (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2017 (4)

Listing 1 - 4 of 4
Sort by

Book
Chromatin remodelling and immunity
Author:
ISBN: 0128123931 0128123923 9780128123935 9780128123928 Year: 2017 Publisher: Cambridge, Massachusetts : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Chromatin regulation and dynamics
Authors: ---
ISBN: 0128034025 9780128034026 0128033959 9780128033951 Year: 2017 Publisher: Amsterdam, [Netherlands] : Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Chromatin regulation and dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, and then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The book also covers the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin regulation and dynamics, as part of the Translational epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, as well as ageing and complex diseases by focusing on recent findings of the fast-moving field of chromatin regulation."--


Book
Chromatin Architecture : Advances From High-resolution Single Molecule DNA Imaging
Author:
ISBN: 9783319521831 Year: 2017 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book sheds new light on the current state of knowledge concerning chromatin organization. Particular emphasis is given to the new imaging potential offered by super-resolution microscopy, which allows DNA imaging with a very high labeling density. From the early work on chromosomes by Walther Flemming in the nineteenth century to recent advances in genomics, the history of chromatin research now spans more than a century. The various milestones, such as the discovery of the double helix structure, the sequencing of the human genome, and the recent description of the genome in 3D space, show that understanding chromatin and chromosome function requires a clear understanding of its structure. Presenting cutting-edge data from super-resolution single molecule microscopy, the book demonstrates that chromatin manifests several levels of folding, from nucleosomes to chromosomes. Chromatin domains emerge as a new fundamental building block of chromatin architecture, with functions possibly related to gene regulation. A detailed description of chromatin folding in the pachytene stage of meiosis serves as a model for exploring this functionality, showing the apparent interplay between structure, function, and epigenetic regulation. Lastly, the book discusses possible new avenues of innovation to describe chromatin’s organization and functions. Gathering essential insights on chromatin architecture, the book offers students an introduction to microscopy and its application to chromatin organization, while also providing advanced readers with new ideas for future research.


Book
Molecular Mechanisms for Sensory Signals : Recognition and Transformation
Author:
ISBN: 0691628939 0691603928 Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pursuing the questions of how we learn and how memory is made, Edward Kosower introduces a novel and rich approach to connecting molecular properties with the biological properties that enable us to write and read, to create culture and ethics, and to think. Here he examines what happens within a single cell in reaction to external stimuli, and shows the parallels between single cell and multicellular responses. To address the problem of "learning," Kosower explains the molecular mechanisms of responses to input from taste, olfactory, and visual receptors. He then shows how these and other processes serve as the basis for memory. This study covers such signals for the molecular process of learning as pheromones (the molecular signals mediating behavior), light (activates the G-protein receptor, rhodopsin), and acetylcholine (opens the nicotinic acetylcholine receptor). Kosower's discussion of the structure and function of these complex molecules has direct implications for such areas as molecular neurobiology, bioorganic chemistry, and drug design, in elucidating approaches to the structure of drug targets.Originally published in 1991.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Molecular neurobiology. --- Cellular signal transduction. --- Molecular recognition. --- Action potential. --- Activation. --- Amino acid. --- Antibody. --- Bilayer. --- Binding protein. --- Biological Assay. --- Biological membrane. --- Biological neural network. --- Biomolecular structure. --- Biosynthesis. --- Catalysis. --- Caudate nucleus. --- Cell surface receptor. --- Chemical change. --- Chemical modification. --- Chemical synapse. --- Chemoreceptor. --- Chemotaxis. --- Chromatin. --- Chromophore. --- Conformational change. --- Creatine kinase. --- Demethylation. --- Electron transport chain. --- Enzyme. --- GABA receptor. --- GABAA receptor. --- Ganglion cell. --- Gel electrophoresis. --- Gene product. --- Globulin. --- Glycine receptor. --- Golgi apparatus. --- Golgi cell. --- Ion channel. --- LTP induction. --- Libration (molecule). --- Ligand (biochemistry). --- Lysine. --- Lysozyme. --- Mechanism of action. --- Mechanoreceptor. --- Membrane potential. --- Methylation. --- Methyltransferase. --- Microvillus. --- Molecular configuration. --- Molecular electronic transition. --- Molecular graphics. --- Molecular sieve. --- Molecule. --- Motor neuron. --- Muscarinic acetylcholine receptor. --- Mutagen. --- Neurofilament. --- Neuroglia. --- Neurokinin A. --- Neuron. --- Neuropeptide. --- Neurotransmitter. --- Nicotinic acetylcholine receptor. --- Olfactory receptor neuron. --- Organism. --- Peptide. --- Permease. --- Pheromone binding protein. --- Pheromone. --- Phosphodiesterase. --- Phosphorylation. --- Physical organic chemistry. --- Plasma protein binding. --- Post-translational modification. --- Protein methylation. --- Protein phosphorylation. --- Protein primary structure. --- Protein structure. --- Protein synthesis inhibitor. --- Protein. --- Proteolysis. --- RNA interference. --- Receptor (biochemistry). --- Receptor modulator. --- Receptors, Neurotransmitter. --- Regulation of gene expression. --- Retina. --- Rhodopsin kinase. --- Rhodopsin. --- Sensory neuron. --- Side chain. --- Signal processing. --- Signal transduction. --- Sodium channel. --- Stimulus (physiology). --- Synapsin I. --- Synapsis. --- Synaptosome. --- Teratology. --- Transducin. --- Transposable element.

Listing 1 - 4 of 4
Sort by