Narrow your search

Library

KU Leuven (5)

UCLL (5)

ULiège (5)

FARO (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

ULB (4)

VIVES (4)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2020 (12)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Free Radical Medicine and Biology
Author:
Year: 2020 Publisher: London : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Although free radicals perform some useful immune functions, they can also damage healthy cells through a process called oxidation. Antioxidants reduce the effect of free radicals by binding together with these harmful molecules, decreasing their destructive power. This book highlights various issues of free radical biology from the perspective of antioxidant defense mechanisms. It also provides useful information on gene modulation, radiation-generated reactive oxygen species-induced apoptosis in cancer, and environmental aspects associated with free radicals' exposure on living systems.


Book
Free Radical Medicine and Biology
Author:
Year: 2020 Publisher: London : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Although free radicals perform some useful immune functions, they can also damage healthy cells through a process called oxidation. Antioxidants reduce the effect of free radicals by binding together with these harmful molecules, decreasing their destructive power. This book highlights various issues of free radical biology from the perspective of antioxidant defense mechanisms. It also provides useful information on gene modulation, radiation-generated reactive oxygen species-induced apoptosis in cancer, and environmental aspects associated with free radicals' exposure on living systems.


Book
Free Radical Medicine and Biology
Author:
Year: 2020 Publisher: London : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Although free radicals perform some useful immune functions, they can also damage healthy cells through a process called oxidation. Antioxidants reduce the effect of free radicals by binding together with these harmful molecules, decreasing their destructive power. This book highlights various issues of free radical biology from the perspective of antioxidant defense mechanisms. It also provides useful information on gene modulation, radiation-generated reactive oxygen species-induced apoptosis in cancer, and environmental aspects associated with free radicals' exposure on living systems.


Book
Free radical medicine and biology
Author:
ISBN: 1789851440 1789851432 Year: 2020 Publisher: London, United Kingdom : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Reactive oxygen species (ROS), nanoparticles, and endoplasmic reticulum (ER) stress-induced cell death mechanisms
Author:
ISBN: 0128224967 0128224819 9780128224960 9780128224816 Year: 2020 Publisher: London Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Free Radical Research in Cancer
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cancer is a great challenge to efficient therapy due to biological diversity. Disturbed oxidative homeostasis in cancer cells certainly contributes to differential therapy response. Further, one of the hallmarks of cancer cells is adaptation which includes fine tuning of the cellular metabolic and signalling pathways as well as transcription profiles. There are several factors which contribute to the tumor diversity and therapy response, and oxidative stress is certainly one of them. Changes in oxygen levels due to hypoxia/reoxygenation during tumor growth modulate antioxidative patterns finally supporting increased cell diversity and adaptation to stressing conditions. Additionally, cancer chemotherapy based on ROS production can also induce also adaptation. To counteract these negative effects natural products are often used for their antioxidant activities as well as photodynamic therapy supported by novel chemosensitizers. Understanding of possible pathways which can trigger antioxidant defence at a certain time during cancer development can also provide possible strategies in fighting cancer.

Keywords

Technology: general issues --- NQO1 --- NQO1*2 --- polymorphism --- quinone --- breast cancer --- menadione --- lapachone --- doxorubicin --- ascorbate --- oxidative stress --- reactive oxygen species --- sperm --- cancer chemotherapy --- antioxidant therapy --- antioxidant proteins --- chemoresistance --- oxaliplatin --- 5-Fluorouracil --- myelodysplastic syndromes --- carbonylation --- deferasirox --- ovary --- calcium channel --- Trolox --- granulosa cell tumor --- cell death --- mitochondria --- photodynamic therapy --- singlet oxygen --- nitric oxide --- light --- combination therapy --- antioxidants --- bleomycin --- cancer treatment --- chemotherapy-induced toxicity --- cisplatin --- free radicals --- methotrexate --- ozone therapy --- lung cancer --- cancer metabolism --- reactive oxygen species (ROS) --- therapy resistance --- new therapeutic strategies --- breast cancer stem cells --- 4-hydroxy-2-nonenal --- extracellular matrix --- NRF2 --- bardoxolone methyl --- prostate cancer --- castration-resistant prostate cancer --- androgen receptor (AR), AR-V7 --- anti-androgen --- enzalutamide --- androgen deprivation therapy --- cancer --- antioxidant --- triphala --- ayurveda --- chemoprevention and chemotherapy --- NQO1 --- NQO1*2 --- polymorphism --- quinone --- breast cancer --- menadione --- lapachone --- doxorubicin --- ascorbate --- oxidative stress --- reactive oxygen species --- sperm --- cancer chemotherapy --- antioxidant therapy --- antioxidant proteins --- chemoresistance --- oxaliplatin --- 5-Fluorouracil --- myelodysplastic syndromes --- carbonylation --- deferasirox --- ovary --- calcium channel --- Trolox --- granulosa cell tumor --- cell death --- mitochondria --- photodynamic therapy --- singlet oxygen --- nitric oxide --- light --- combination therapy --- antioxidants --- bleomycin --- cancer treatment --- chemotherapy-induced toxicity --- cisplatin --- free radicals --- methotrexate --- ozone therapy --- lung cancer --- cancer metabolism --- reactive oxygen species (ROS) --- therapy resistance --- new therapeutic strategies --- breast cancer stem cells --- 4-hydroxy-2-nonenal --- extracellular matrix --- NRF2 --- bardoxolone methyl --- prostate cancer --- castration-resistant prostate cancer --- androgen receptor (AR), AR-V7 --- anti-androgen --- enzalutamide --- androgen deprivation therapy --- cancer --- antioxidant --- triphala --- ayurveda --- chemoprevention and chemotherapy


Book
Roles and Functions of ROS and RNS in Cellular Physiology and Pathology
Author:
ISBN: 3039287834 3039287826 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Our common knowledge on oxidative stress has evolved substantially over the years and has been mostly focused on the fundamental chemical reactions and the most relevant chemical species involved in the human pathophysiology of oxidative stress-associated diseases. Thus, reactive oxygen species and reactive nitrogen species (ROS and RNS) were identified as the key players initiating, mediating, and regulating the cellular and biochemical complexity of oxidative stress either as physiological (acting pro-hormetic) or as pathogenic (causing destructive vicious circle) process. The papers published in this particular Special Issue of the Cells demonstrate the impressive pathophysiological relevance of ROS and RNS in a range of contexts, including the relevance of second messengers of free radicals like 4-hydroxynonenal, allowing us to assume that even more detailed mechanisms of their positive and negative effects lie in wait, and should assist in better monitoring of the major modern diseases and the development of advanced integrative biomedicine treatments.

Keywords

toxicity --- toll-like receptors --- acrolein --- hydroxyapatite-based biomaterials --- LC-MS/MS --- blood–brain barrier --- NADPH-oxidase --- human neuroblastoma SH-SY5Y cells --- NRF2-NQO1 axis --- granulocytes --- free radicals --- antioxidant --- plaque vulnerability --- bEnd.3 --- relaxation --- Ca2+ --- keratinocytes --- oxidative metabolism of the cells --- lipid peroxidation --- intermittent hypoxia --- osteoblast growth --- UV radiation --- ROS --- bEnd5 --- cyclopurines --- NF?B --- glucose deprivation --- antimicrobial --- endothelial cells --- 4-hydroxynonenal (4-HNE) --- histamine --- glutamine deprivation --- optical coherence tomography --- antioxidants --- DNA damage --- glutathione --- NQO1 transcript variants --- xeroderma pigmentosum --- cancer cells --- VAS2870 --- reactive oxygen species (ROS) --- TP53 mutation --- DNA and RNA polymerases --- viability --- oxidative burst --- macrophages --- inflammation --- Nrf2 --- von Willebrand factor --- reactive oxygen species --- growth control --- intracellular signaling --- MFN2 --- nuclear factor erythroid 2–related factor 2 --- fusion/fission --- IMR-90 --- calcium --- proliferation --- mitochondria --- pathophysiology of oxidative stress --- redox balance --- 4-hydroxynonenal --- cannabidiol --- oxidative homeostasis --- rs1800566 --- neuronal cell death --- heme-oxygenase-1 --- vitamins --- cell signaling --- TRPM2 channel --- aorta --- cancer --- growth --- cancer regression --- oxidative stress --- nucleotide excision repair


Book
Free Radical Research in Cancer
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cancer is a great challenge to efficient therapy due to biological diversity. Disturbed oxidative homeostasis in cancer cells certainly contributes to differential therapy response. Further, one of the hallmarks of cancer cells is adaptation which includes fine tuning of the cellular metabolic and signalling pathways as well as transcription profiles. There are several factors which contribute to the tumor diversity and therapy response, and oxidative stress is certainly one of them. Changes in oxygen levels due to hypoxia/reoxygenation during tumor growth modulate antioxidative patterns finally supporting increased cell diversity and adaptation to stressing conditions. Additionally, cancer chemotherapy based on ROS production can also induce also adaptation. To counteract these negative effects natural products are often used for their antioxidant activities as well as photodynamic therapy supported by novel chemosensitizers. Understanding of possible pathways which can trigger antioxidant defence at a certain time during cancer development can also provide possible strategies in fighting cancer.


Book
Free Radical Research in Cancer
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cancer is a great challenge to efficient therapy due to biological diversity. Disturbed oxidative homeostasis in cancer cells certainly contributes to differential therapy response. Further, one of the hallmarks of cancer cells is adaptation which includes fine tuning of the cellular metabolic and signalling pathways as well as transcription profiles. There are several factors which contribute to the tumor diversity and therapy response, and oxidative stress is certainly one of them. Changes in oxygen levels due to hypoxia/reoxygenation during tumor growth modulate antioxidative patterns finally supporting increased cell diversity and adaptation to stressing conditions. Additionally, cancer chemotherapy based on ROS production can also induce also adaptation. To counteract these negative effects natural products are often used for their antioxidant activities as well as photodynamic therapy supported by novel chemosensitizers. Understanding of possible pathways which can trigger antioxidant defence at a certain time during cancer development can also provide possible strategies in fighting cancer.


Book
Natural Products and Neuroprotection
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.

Keywords

Research & information: general --- Biology, life sciences --- Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson's disease --- terpenes, rotenone --- thymol --- Alzheimer's disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood-brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients' autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson's disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy --- Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson's disease --- terpenes, rotenone --- thymol --- Alzheimer's disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood-brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients' autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson's disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy

Listing 1 - 10 of 12 << page
of 2
>>
Sort by