Narrow your search

Library

KU Leuven (23)

Odisee (22)

Thomas More Kempen (22)

Thomas More Mechelen (22)

UCLL (22)

ULB (22)

ULiège (22)

VIVES (22)

FARO (21)

LUCA School of Arts (21)

More...

Resource type

book (53)


Language

English (53)


Year
From To Submit

2020 (53)

Listing 1 - 10 of 53 << page
of 6
>>
Sort by

Book
NiTi materials : biomedical applications
Authors: ---
ISBN: 1523154373 3110666111 Year: 2020 Publisher: Berlin ; Boston : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nickel-Titanium alloys are smart materials exhibiting unique properties such as superelasticity and shape-memory effect. The material has been used as orthodontic wires in the dental field for over 20 years. This book is a comprehensive overview to the field of Ni-Ti Materials and the physical, chemical and mechanical properties of this versatile alloy. In addition, complications and challenges exhibited in applications are also discussed.


Book
Bioinorganic Chemistry of Nickel
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of nickel in biological systems has been intensely investigated since the discovery of the essential role played by this transition metal in the enzyme urease, ca. 1975. Since then, several nickel-dependent enzymes have been discovered and characterized at the molecular level using structural, spectroscopic, and kinetic methods, and insight into reaction mechanisms has been elaborated using synthetic and computational models. The dual role of nickel as both an essential nutrient and as a toxin has prompted efforts to understand the molecular mechanisms of nickel toxicology and to uncover the means by which cells select nickel from among a pool of different and more readily available metal ions and thus regulate the intracellular chemistry of nickel. This latter effort highlights the importance of proteins involved in the extra- and intra-cellular sensing of nickel, the roles of nickel-selective proteins for import and export, and nickel-responsive transcription factors, all of which are important for regulating nickel homeostasis. In this Special Issue, the contributing authors have covered recent advances in many of these aspects of nickel biochemistry, including toxicology, bacterial pathogenesis, carcinogenesis, computational and synthetic models, nickel trafficking proteins, and enzymology.


Book
Bioinorganic Chemistry of Nickel
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of nickel in biological systems has been intensely investigated since the discovery of the essential role played by this transition metal in the enzyme urease, ca. 1975. Since then, several nickel-dependent enzymes have been discovered and characterized at the molecular level using structural, spectroscopic, and kinetic methods, and insight into reaction mechanisms has been elaborated using synthetic and computational models. The dual role of nickel as both an essential nutrient and as a toxin has prompted efforts to understand the molecular mechanisms of nickel toxicology and to uncover the means by which cells select nickel from among a pool of different and more readily available metal ions and thus regulate the intracellular chemistry of nickel. This latter effort highlights the importance of proteins involved in the extra- and intra-cellular sensing of nickel, the roles of nickel-selective proteins for import and export, and nickel-responsive transcription factors, all of which are important for regulating nickel homeostasis. In this Special Issue, the contributing authors have covered recent advances in many of these aspects of nickel biochemistry, including toxicology, bacterial pathogenesis, carcinogenesis, computational and synthetic models, nickel trafficking proteins, and enzymology.


Book
Bioinorganic Chemistry of Nickel
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemistry of nickel in biological systems has been intensely investigated since the discovery of the essential role played by this transition metal in the enzyme urease, ca. 1975. Since then, several nickel-dependent enzymes have been discovered and characterized at the molecular level using structural, spectroscopic, and kinetic methods, and insight into reaction mechanisms has been elaborated using synthetic and computational models. The dual role of nickel as both an essential nutrient and as a toxin has prompted efforts to understand the molecular mechanisms of nickel toxicology and to uncover the means by which cells select nickel from among a pool of different and more readily available metal ions and thus regulate the intracellular chemistry of nickel. This latter effort highlights the importance of proteins involved in the extra- and intra-cellular sensing of nickel, the roles of nickel-selective proteins for import and export, and nickel-responsive transcription factors, all of which are important for regulating nickel homeostasis. In this Special Issue, the contributing authors have covered recent advances in many of these aspects of nickel biochemistry, including toxicology, bacterial pathogenesis, carcinogenesis, computational and synthetic models, nickel trafficking proteins, and enzymology.


Book
Controlling Collective Electronic States in Cuprates and Nickelates : A Resonant X-ray Scattering Study
Author:
ISBN: 3030479021 3030479013 Year: 2020 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this thesis chemical and epitaxial degrees of freedom are used to manipulate charge and spin ordering phenomena in two families of transition metal oxides, while taking advantage of state-of-the-art resonant x-ray scattering (RXS) methods to characterize their microscopic origin in a comprehensive manner. First, the relationship of charge density wave order to both magnetism and the "pseudogap" phenomenon is systematically examined as a function of charge-carrier doping and isovalent chemical substitution in single crystals of a copper oxide high-temperature superconductor. Then, in copper oxide thin films, an unusual three-dimensionally long-range-ordered charge density wave state is discovered, which persists to much higher temperatures than charge-ordered states in other high-temperature superconductors. By combining crystallographic and spectroscopic measurements, the origin of this phenomenon is traced to the epitaxial relationship with the underlying substrate. This discovery opens new perspectives for the investigation of charge order and its influence on the electronic properties of the cuprates. In a separate set of RXS experiments on superlattices with alternating nickel and dysprosium oxides, several temperature- and magnetic-field-induced magnetic phase transitions are discovered. These observations are explained in a model based on transfer of magnetic order and magneto-crystalline anisotropy between the Ni and Dy subsystems, thus establishing a novel model system for the interplay between transition-metal and rare-earth magnetism.


Book
Iron and Cobalt Catalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.

Keywords

Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys


Book
Iron and Cobalt Catalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.

Keywords

Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys


Book
Iron and Cobalt Catalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.

Keywords

polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys


Book
Electrochemical Capacitors
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.


Book
Electrochemical Capacitors
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrochemical capacitors are being increasingly introduced in energy storage devices, for example, in automobiles, renewable energies, and mobile terminals. This book includes five high-quality papers that can lead to technological developments in electrochemical capacitors. The first paper describes the effect of the milling degree of activated carbon particles used in the electrodes on the supercapacitive performance of an electric double-layer capacitor. The second, fourth, and fifth papers describe novel electrode materials that have the potential to enhance the performance of next-generation electrochemical capacitors. Nickel molybdate/reduced graphene oxide nanocomposite, copper-decorated carbon nanotubes, and nickel hydroxide/activated carbon composite are tested, and are shown to be promising candidates for next-generation electrochemical capacitors. The third paper reports the hybrid utilization of electrochemical capacitors with other types of energy devices (photovoltaics, fuel cells, and batteries) in a DC microgrid, which ensures wider applications of electrochemical capacitors in the near future. The knowledge and experience in this book are beneficial in manufacturing and utilizing electrochemical capacitors. Cutting-edge knowledge related to novel electrode nano-materials is also helpful to design next-generation electrochemical capacitors. This book delivers useful information to specialists involved in energy storage technologies.

Listing 1 - 10 of 53 << page
of 6
>>
Sort by