Narrow your search

Library

ULiège (3)

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

VIVES (2)

More...

Resource type

book (4)

dissertation (1)


Language

English (5)


Year
From To Submit

2020 (5)

Listing 1 - 5 of 5
Sort by

Dissertation
Process-oriented Characterization of Platinum Group Metals from Spent Automotive Catalysts and Evaluating Future Urban Mines (Université de Liège)
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Platinum group metals (PGMs) are among the 27 raw materials labeled as critical by the EU in 2017 due to their economic importance and supply risk. South Africa and Russia collectively produce approximately 80% of the global PGM mine production. The single biggest application of Pt, Pd, and Rh is in automotive catalytic converters (ACCs) to abate the emissions from engine exhaust. Each ACC contains a few grams of these precious metals. The concentration of PGMs in ACC urban mines (>2000 ppm) is much higher than that of conventional mines (<10 ppm). Thus, recycling of end of life automotive catalytic converters (ACCs) present an important source of platinum group metals (PGMs). The circular economy of ACC not only helps Europe further develop domestic production but has several economic and ecological benefits. PGMs are currently recycled from ACCs by pyrometallurgical means and the development of low-cost alternatives in hydrometallurgy has long been the focus of research. The efficiency of the economical leaching techniques has generally been low, owing to the paucity of understanding of a very complex and heterogeneous ACC material and insufficient process-oriented characterization.&#13;An in-depth literature study suggested that automotive catalysis is a broad field and ACC input material is influenced by several factors including technological and legislative development, size and type of engine, manufacturer, etc. It was also found that due to the nano nature of PGMs in ACCs, the potential of SEM characterization has been under-utilized. SEM characterization showed structural and compositional differences between ceramic three-way catalysts (CTWC), metallic three-way catalysts (MTWC), diesel oxidation catalysts (DOC), and diesel particle filter (DPF). It was also found that harsh operating conditions further impact the ACC material as analyzed under SEM. PGM particles were not only visualized but key processes that happen over time such as catalyst poisoning, PGM, and washcoat component thermal sintering, were obvious which influence chemical composition and particle size/porosity reduction. All this information was found to be of great relevance for subsequent leaching processes. Leach feed and residue samples also showed that some information on the process controls could be acquired using SEM.&#13;It was also found that the statistics from the automotive market and basic understanding of ACCs could help in defining different sections of ACC-urban mines based on grade and PGM type.


Book
Advances in Hydrometallurgy
Author:
ISBN: 3039289403 303928939X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of new technologies and the increasing demand for mineral resources from emerging countries are responsible for significant tensions in the pricing of non-ferrous metals. Some metals have become strategic and critical because they are used in many technological applications such as flat panel TVs (indium), solar panel cells (indium), lithium-ion batteries for electric vehicles (lithium, cobalt), magnets (rare earth elements, such as neodymium and dysprosium), scintillators (rare earths), and aviation and medical applications (titanium); their availabilities remain limited. The secured supply of these metals is crucial to continue producing and exporting these technologies, and because the specific properties of these metals make them essential and difficult to substitute for a given industrial application. Hydrometallurgy have the advantages of being able to process low-grade ores, to allow better control of co-products, and have a lower environmental impact providing that the hydrometallurgical route is optimized and cheap. The need to develop sustainable, efficient, and cheap processes to extract metals from complex and poor polymetallic matrices is real. The aim of this book was to highlight recent advances related to hydrometallurgy to face new challenges in metal production.


Book
Emissions Control Catalysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The important advances achieved over the past years in all technological directions (industry, energy, and health) contributing to human well-being are unfortunately, in many cases, accompanied by a threat to the environment, with photochemical smog, stratospheric ozone depletion, acid rain, global warming, and finally climate change being the most well-known major issues. These are the results of a variety of pollutants emitted through these human activities. The indications show that we are already at a tipping point that might lead to non-linear and sudden environmental change on a global scale. Aiming to tackle these adverse effects in an attempt to mitigate any damage that has already occurred and to ensure that we are heading toward a cleaner (green) and sustainable future, scientists around the world are developing tools and techniques to understand, monitor, protect, and improve the environment. Emissions control catalysis is continuously advancing, providing novel, multifunctional, and optimally promoted using a variety of methods, nano-structured catalytic materials, and strategies (e.g., energy chemicals recycling, cyclic economy) that enable us to effectively control emissions, either of mobile or stationary sources, improving the quality of air (outdoor and indoor) and water and the energy economy. Representative cases include the abatement and/or recycling of CO2, CO, NOx, N2O, NH3, CH4, higher hydrocarbons, volatile organic compounds (VOCs), particulate matter, and specific industrial emissions (e.g., SOx, H2S, dioxins aromatics, and biogas). The “Emissions Control Catalysis” Special Issue has succeeded in collecting 22 high-quality contributions, included in this MDPI open access book, covering recent research progress in a variety of fields relevant to the above topics and/or applications, mainly on: (i) NOx catalytic reduction from cars (i.e., TWC) and industry (SCR) emissions; (ii) CO, CH4, and other hydrocarbons removal, and (iii) CO2 capture/recirculation combining emissions control with added-value chemicals production.

Keywords

Research & information: general --- Environmental economics --- Pollution control --- LNT --- NSR --- NOx storage --- phosphorous --- deactivation --- poisoning --- electrochemical reduction --- CO2 --- CuO --- TiO2 --- ethanol --- cerium-doped titania --- sulfur-tolerant materials --- organic compounds purification --- diesel oxidation catalyst --- vehicle exhaust --- chemical looping reforming --- hydrogen --- oxygen carrier --- CeO2 --- nanorod --- selective catalytic reduction --- nitric oxide --- ammonia --- Cu/ZSM-5 --- cerium --- zirconium --- CO2 electroreduction --- CO2 valorization --- Cu catalyst --- particle size --- PEM --- acetaldehyde production --- methanol production --- Ce-based catalyst --- stepwise precipitation --- diesel exhaust --- nitrogen oxides abatement --- electrochemical promotion --- NEMCA --- palladium --- ionic promoter --- nanoparticles --- yttria-stabilized zirconia --- direct NO decomposition --- PGM oxide promotion --- PdO vs. PtO --- in-situ FT-IR --- NO adsorption properties --- redox properties --- sintered ore catalyst --- sulfate --- In-situ DRIFTS --- SCR --- copper-ceria catalysts --- hydrothermal method --- CO oxidation --- copper clusters --- nanoceria --- SOECs --- RWGS reaction kinetics --- Au–Mo–Fe-Ni/GDC electrodes --- high temperature H2O/CO2 co-electrolysis --- platinum --- Rhodium --- iridium --- NO --- N2O --- propene --- CO --- methane --- alkali --- alkaline earth --- platinum group metals --- deNOx chemistry --- lean burn conditions --- TWC --- catalyst promotion --- EPOC --- NH3-SCR --- nanostructure --- kinetics --- thermodynamics --- manganese oxides --- Co3O4 --- complete CH4 oxidation --- hydrothermal synthesis --- precipitation --- Pd/BEA --- Cold start --- Pd species --- NOx abatement --- ammonia oxidation --- response surface methodology --- desirability function --- Box-Behnken design --- carbon dioxide --- hydrogenation --- heterogeneous catalysis --- plasma catalysis --- value-added chemicals --- methanol synthesis --- methanation --- Catalyst --- (NH4)2SO4 --- deNOx --- H2O and SO2 poisoning --- low-temperature selective catalytic reduction --- de-NOx catalysis --- SO2/H2O tolerance --- transition metal-based catalysts --- perovskite --- catalytic coating --- cathodic sputtering method --- n/a --- Au-Mo-Fe-Ni/GDC electrodes


Book
Emissions Control Catalysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The important advances achieved over the past years in all technological directions (industry, energy, and health) contributing to human well-being are unfortunately, in many cases, accompanied by a threat to the environment, with photochemical smog, stratospheric ozone depletion, acid rain, global warming, and finally climate change being the most well-known major issues. These are the results of a variety of pollutants emitted through these human activities. The indications show that we are already at a tipping point that might lead to non-linear and sudden environmental change on a global scale. Aiming to tackle these adverse effects in an attempt to mitigate any damage that has already occurred and to ensure that we are heading toward a cleaner (green) and sustainable future, scientists around the world are developing tools and techniques to understand, monitor, protect, and improve the environment. Emissions control catalysis is continuously advancing, providing novel, multifunctional, and optimally promoted using a variety of methods, nano-structured catalytic materials, and strategies (e.g., energy chemicals recycling, cyclic economy) that enable us to effectively control emissions, either of mobile or stationary sources, improving the quality of air (outdoor and indoor) and water and the energy economy. Representative cases include the abatement and/or recycling of CO2, CO, NOx, N2O, NH3, CH4, higher hydrocarbons, volatile organic compounds (VOCs), particulate matter, and specific industrial emissions (e.g., SOx, H2S, dioxins aromatics, and biogas). The “Emissions Control Catalysis” Special Issue has succeeded in collecting 22 high-quality contributions, included in this MDPI open access book, covering recent research progress in a variety of fields relevant to the above topics and/or applications, mainly on: (i) NOx catalytic reduction from cars (i.e., TWC) and industry (SCR) emissions; (ii) CO, CH4, and other hydrocarbons removal, and (iii) CO2 capture/recirculation combining emissions control with added-value chemicals production.

Keywords

Research & information: general --- Environmental economics --- Pollution control --- LNT --- NSR --- NOx storage --- phosphorous --- deactivation --- poisoning --- electrochemical reduction --- CO2 --- CuO --- TiO2 --- ethanol --- cerium-doped titania --- sulfur-tolerant materials --- organic compounds purification --- diesel oxidation catalyst --- vehicle exhaust --- chemical looping reforming --- hydrogen --- oxygen carrier --- CeO2 --- nanorod --- selective catalytic reduction --- nitric oxide --- ammonia --- Cu/ZSM-5 --- cerium --- zirconium --- CO2 electroreduction --- CO2 valorization --- Cu catalyst --- particle size --- PEM --- acetaldehyde production --- methanol production --- Ce-based catalyst --- stepwise precipitation --- diesel exhaust --- nitrogen oxides abatement --- electrochemical promotion --- NEMCA --- palladium --- ionic promoter --- nanoparticles --- yttria-stabilized zirconia --- direct NO decomposition --- PGM oxide promotion --- PdO vs. PtO --- in-situ FT-IR --- NO adsorption properties --- redox properties --- sintered ore catalyst --- sulfate --- In-situ DRIFTS --- SCR --- copper-ceria catalysts --- hydrothermal method --- CO oxidation --- copper clusters --- nanoceria --- SOECs --- RWGS reaction kinetics --- Au–Mo–Fe-Ni/GDC electrodes --- high temperature H2O/CO2 co-electrolysis --- platinum --- Rhodium --- iridium --- NO --- N2O --- propene --- CO --- methane --- alkali --- alkaline earth --- platinum group metals --- deNOx chemistry --- lean burn conditions --- TWC --- catalyst promotion --- EPOC --- NH3-SCR --- nanostructure --- kinetics --- thermodynamics --- manganese oxides --- Co3O4 --- complete CH4 oxidation --- hydrothermal synthesis --- precipitation --- Pd/BEA --- Cold start --- Pd species --- NOx abatement --- ammonia oxidation --- response surface methodology --- desirability function --- Box-Behnken design --- carbon dioxide --- hydrogenation --- heterogeneous catalysis --- plasma catalysis --- value-added chemicals --- methanol synthesis --- methanation --- Catalyst --- (NH4)2SO4 --- deNOx --- H2O and SO2 poisoning --- low-temperature selective catalytic reduction --- de-NOx catalysis --- SO2/H2O tolerance --- transition metal-based catalysts --- perovskite --- catalytic coating --- cathodic sputtering method --- n/a --- Au-Mo-Fe-Ni/GDC electrodes


Book
Emissions Control Catalysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The important advances achieved over the past years in all technological directions (industry, energy, and health) contributing to human well-being are unfortunately, in many cases, accompanied by a threat to the environment, with photochemical smog, stratospheric ozone depletion, acid rain, global warming, and finally climate change being the most well-known major issues. These are the results of a variety of pollutants emitted through these human activities. The indications show that we are already at a tipping point that might lead to non-linear and sudden environmental change on a global scale. Aiming to tackle these adverse effects in an attempt to mitigate any damage that has already occurred and to ensure that we are heading toward a cleaner (green) and sustainable future, scientists around the world are developing tools and techniques to understand, monitor, protect, and improve the environment. Emissions control catalysis is continuously advancing, providing novel, multifunctional, and optimally promoted using a variety of methods, nano-structured catalytic materials, and strategies (e.g., energy chemicals recycling, cyclic economy) that enable us to effectively control emissions, either of mobile or stationary sources, improving the quality of air (outdoor and indoor) and water and the energy economy. Representative cases include the abatement and/or recycling of CO2, CO, NOx, N2O, NH3, CH4, higher hydrocarbons, volatile organic compounds (VOCs), particulate matter, and specific industrial emissions (e.g., SOx, H2S, dioxins aromatics, and biogas). The “Emissions Control Catalysis” Special Issue has succeeded in collecting 22 high-quality contributions, included in this MDPI open access book, covering recent research progress in a variety of fields relevant to the above topics and/or applications, mainly on: (i) NOx catalytic reduction from cars (i.e., TWC) and industry (SCR) emissions; (ii) CO, CH4, and other hydrocarbons removal, and (iii) CO2 capture/recirculation combining emissions control with added-value chemicals production.

Keywords

LNT --- NSR --- NOx storage --- phosphorous --- deactivation --- poisoning --- electrochemical reduction --- CO2 --- CuO --- TiO2 --- ethanol --- cerium-doped titania --- sulfur-tolerant materials --- organic compounds purification --- diesel oxidation catalyst --- vehicle exhaust --- chemical looping reforming --- hydrogen --- oxygen carrier --- CeO2 --- nanorod --- selective catalytic reduction --- nitric oxide --- ammonia --- Cu/ZSM-5 --- cerium --- zirconium --- CO2 electroreduction --- CO2 valorization --- Cu catalyst --- particle size --- PEM --- acetaldehyde production --- methanol production --- Ce-based catalyst --- stepwise precipitation --- diesel exhaust --- nitrogen oxides abatement --- electrochemical promotion --- NEMCA --- palladium --- ionic promoter --- nanoparticles --- yttria-stabilized zirconia --- direct NO decomposition --- PGM oxide promotion --- PdO vs. PtO --- in-situ FT-IR --- NO adsorption properties --- redox properties --- sintered ore catalyst --- sulfate --- In-situ DRIFTS --- SCR --- copper-ceria catalysts --- hydrothermal method --- CO oxidation --- copper clusters --- nanoceria --- SOECs --- RWGS reaction kinetics --- Au–Mo–Fe-Ni/GDC electrodes --- high temperature H2O/CO2 co-electrolysis --- platinum --- Rhodium --- iridium --- NO --- N2O --- propene --- CO --- methane --- alkali --- alkaline earth --- platinum group metals --- deNOx chemistry --- lean burn conditions --- TWC --- catalyst promotion --- EPOC --- NH3-SCR --- nanostructure --- kinetics --- thermodynamics --- manganese oxides --- Co3O4 --- complete CH4 oxidation --- hydrothermal synthesis --- precipitation --- Pd/BEA --- Cold start --- Pd species --- NOx abatement --- ammonia oxidation --- response surface methodology --- desirability function --- Box-Behnken design --- carbon dioxide --- hydrogenation --- heterogeneous catalysis --- plasma catalysis --- value-added chemicals --- methanol synthesis --- methanation --- Catalyst --- (NH4)2SO4 --- deNOx --- H2O and SO2 poisoning --- low-temperature selective catalytic reduction --- de-NOx catalysis --- SO2/H2O tolerance --- transition metal-based catalysts --- perovskite --- catalytic coating --- cathodic sputtering method --- n/a --- Au-Mo-Fe-Ni/GDC electrodes

Listing 1 - 5 of 5
Sort by