Narrow your search

Library

ULiège (10)


Resource type

dissertation (10)


Language

English (5)

French (5)


Year
From To Submit

2021 (10)

Listing 1 - 10 of 10
Sort by

Dissertation
Effect of amphetamine on the electrical activity of the ventral tegmental area in rats : an exploratory investigation
Authors: ---
Year: 2021

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Etude de la modulation du site du co-agoniste des récepteurs NMDA dans les neurones à dopamine de la substance noire compacte

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Etude de l'influence de l'état de stress posttraumatique sur la vulnérabilité aux drogues chez la souris DBA/2J

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Une nouvelle hypothèse sur le mécanisme de pacemaking dans les neurones dopaminergiques de la substance noire compacte
Authors: --- ---
Year: 2021

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Nouvelle stratégie thérapeutique hautement spécifique par l'inhibition du promoteur DMPK dans la dystrophie myotonique de type = : New highly specific therapeutic strategy by DPMK promoter silencing in myotonic dystrophy type 1
Authors: --- ---
Year: 2021

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Modeling calcium-dependent synaptic plasticity and its role in sleep-dependent memory consolidation
Authors: --- --- --- ---
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

It has been shown that a single neuron can encounter different firing rates during the sleep and the awake states. Those rhythms directly have an impact on the synaptic weight between the neurons. Moreover, recent evidence shows that spindle oscillations encountered during sleep influence the calcium levels in the post-synaptic spine that trigger synaptic plasticity changes. There exists a large number of synaptic plasticity rules. In particular, this thesis focuses on calcium-induced synaptic plasticity. However, the little number of calcium-based models do not take into account the calcium dynamics in much detail. Indeed, to reproduce protocols and obtain results that are consistent with experimental data, a great number of simplifications are often considered. A review of the existing calcium-based models is made in order to categorize those models in a systematic way: ‘How do they implement the calcium flow into the neuron?’, ‘What is the equation governing synaptic plasticity depending on the calcium concentration?’, etc. The thesis focuses on the calcium-dependent synaptic plasticity model developed by Graupner et al. (2016). This model has made simplifications to implement the calcium dynamics while being consistent with data obtained experimentally. The contribution of this thesis is first to integrate this abstract model into a conductance-based model which allows switching from a tonic pattern to a bursting pattern, encountered during the switch to the sleep state. This allows observing what are the consequences of this switch on the calcium-dependent synaptic plasticity. The second main contribution of the thesis is
to integrate a more detailed calcium dynamics into the abstract calcium dynamics model from Graupner et al. (2016). The key message is the fact that integrating a detailed calcium dynamics into an abstract one represents a major challenge to tackle because of the large number of assumptions that have been made to construct this abstract model. This leads to the prospect that starting from a more physiological calcium dynamics then integrating a calcium-dependent synaptic plasticity rule to this model may be a more suitable way of doing.


Dissertation
Thesis, COLLÉGIALITÉ
Authors: --- --- --- ---
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Les GPCR (récepteurs couplés aux protéines G) constituent la plus grande famille des récepteurs membranaires. Leur caractéristique principale est que lorsqu’ils sont activés, la transduction du signal s’effectue via des protéines hétérotrimériques que sont les protéines G. Cependant, certains de ces GPCR n’activent pas ces protéines G et ont donc un caractère dit « atypique ». 
Les GPCR sont impliqués dans de nombreux processus physio(patho)logiques et fixent des ligands de natures différentes. En revanche, une centaine de ces récepteurs n’ont actuellement pas de ligand endogène connu et sont donc appelés récepteurs « orphelins ». Le sujet de ce mémoire porte sur l’un de ces récepteurs orphelins qui est le GPR27. GPR27 fait partie de la famille des SREB (Super Conserved Receptor Expressed in Brain). L’hypothèse est que ce récepteur est atypique et donc que sa signalisation ne passe pas par l’activation de protéines G.
Au sein de la famille des GPCR, certains motifs d’acides aminés sont très conservés au cours de l’évolution et sont impliqués dans le couplage aux protéines G. En ce qui concerne GPR27, la plupart de ceux-ci ne sont pas conservés, ce qui pourrait expliquer l’absence de couplage aux protéines G observé. L’objectif de ce mémoire est de déterminer si les motifs spécifiques de GPR27, différant des motifs conservés dans les autres GPCR de classe A, lui confèrent son caractère atypique de ne pas coupler aux protéines G. 
Pour confirmer cette hypothèse, des mutants de GPR27 ont été générés via mutagenèse dirigée afin de restaurer les différents motifs conservés par les autres récepteurs. Ensuite, le couplage aux protéines G des mutants de GPR27 a été évalué dans un test de complémentation à la nanoluciférase. Ce test a nécessité une optimisation de plusieurs paramètres. Lors de l’analyse de l’interaction entre un mutant délété de son ECL2 et la sous-unité Gi, un signal significatif a été détecté. Cependant, lors d’une analyse en concentration-réponse en présence de PTX, l’interaction entre le mutant et Gi1 n’a pas pu être confirmée.


Dissertation
Modeling of the interaction between neuronal populations involved in memory consolidation during the sleep-wake switch
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

It has been shown experimentally that memory consolidation occurs during sleep and that three brain regions are involved in this process: the thalamus, the neocortex and the hippocampus. The hippocampus has been shown as being the short-term store of the representation, the neocortex as the long-term store and the thalamus as the coordinator of the consolidation during sleep. As an illustration, when an individual experiences a camping event in which he observes his tent and the trees, he can recall a representation of this event after a night of sleep at the sight of his tent. The representation has been consolidated in the long-term store, the connections between the two items are reinforced in the neocortex thanks to neuronal ensemble reactivations occurring in the hippocampus during sleep. It appears that the synchronization of their electrical behaviour is essential for the consolidation of the experience in the neocortex. 

In order to deepen our knowledge about how memories are consolidated thanks to those organs, computational modeling is a powerful approach for testing various stimuli. However, the cellular communication between these three regions is computationally under-investigated. 

Therefore, this present work aims to reproduce a simplified and faithful computational representation of global and local interactions in the context of memory consolidation. The global anatomy and the role of these brain regions are first highlighted and the oscillations of the sleep-wake cycle are examined. The neurophysiology of each cell types composing the different regions is deeply studied by exploring the literature. Then, the way the cells communicate is inspected in order to build a simplified but still representative cellular network connecting the three regions and demonstrating their communication during wakefulness and sleep. To that aim, conductance-based models are suitable modeling tools used for reproducing the electrical behaviour of the distinct types of cells constituting the thalamus, neocortex and hippocampus.

The behaviour of each cell taken individually is favourably reproduced with the aim of replicating
the communication between each cell in the built network, which is performed successfully.
Moreover, the network developed is robust to variability


Dissertation
Integrate-and-fire modeling of dorsal horn neurons and their functional states in pain pathways
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pain sensations are adaptive and aim to keep the body safe by triggering appropriate
protective responses. However, pain can become maladaptive and create a disease state of
the nervous system, associated with chronic pain. This disease state results in an acute
and prolonged feeling of pain. To relieve patients suffering from chronic pain, there are two
suboptimal treatments, both effective in less than 50% of cases: the prescription of opioids,
at the risk of misuse or abuse that could cause overdosed-related deaths, or spinal cord
stimulation, a new promising treatment strategy. Both of them are suboptimal due to the
lack of knowledge about the mechanisms behind pain generation. A better understanding
of these mechanisms would help to develop more efficient treatment strategies.
This thesis focuses on the modeling of the behavior of Dorsal Horn Neurons (DHNs),
which are neurons in the spinal cord embedded in the network taking care of pain signal
transmission to the brain. This group of neurons shows 4 types of firing patterns: tonic
firing, accelerating firing, plateau potentials and bursting. Each firing pattern is assumed
to correspond to a type of functional state in pain processing. Based on some of the rare
attempts to model them, we developed an integrate-and-fire model of DHNs. Our objective
is to understand the role of each timescale in the DHNs firing patterns generation and the
type of feedback involved in the excitability of these neurons, which is either restorative
or regenerative.
More specifically, this thesis follows an incremental procedure starting from a 2D
integrate-and-fire model with a fast and a slow feedback. The impact of the slow feedback nature (restorative or regenerative) on the phase plane and the time responses is
studied. The regenerative slow feedback involves specific properties shown in neurons that
have calcium channels such as bistability, spike latency and afterdepolarization potential.
The restorative slow feedback allows to always converge back to rest without perturbations.
Together, these two feedbacks are able to simulate tonic firing.
Then, we created a 3D model with a fast, a slow regenerative and an ultra-slow restorative feedback. The analysis of this new model revealed that the additional ultra-slow feedback is involved in the generation of bursting. Indeed, the ultra-slow feedback offers a
modulation of the total current applied in the equivalent 2D model. This allows the generation of trains of spikes and quiescent periods as the 2D model travels between the stable
and the cyclic regimes during a period of oscillations of the 3D model response.
Following the incremental procedure, the final 4D model consists in a fast, a slow regenerative, a super-slow regenerative and an ultra-slow restorative feedbacks. The additional
super-slow feedback offers a second direction for the modulation of the total current applied
in the 2D equivalent model by shaping the increase in instantaneous frequency during the
burst or before converging towards a limit cycle, in the case where the ultra-slow feedback
is weak. The 4D model is able to represent all DHNs firing patterns stated provided that
the strength of each feedback is well chosen. This result allows to better understand the
functional mechanisms behind the change in excitability.
In further works, it would be interesting to verify that conductance-based models follow
the mechanisms we highlighted. Also, a model of the pain processing network at the level
of the spinal cord may reveal other directions of DHNs excitability modulation on which
new designs of pharmacological or neurostimulation treatments could act on Les sensations de douleur sont adaptatives et visent à assurer la sécurité de l’organisme
en déclenchant des réponses protectrices appropriées. Cependant, la douleur peut devenir inadaptée et créer un état pathologique du système nerveux, associé à la douleur
chronique. Cet état pathologique se traduit par une sensation de douleur aiguë et prolongée. Pour soulager les patients souffrant de douleurs chroniques, il existe deux traitements sous-optimaux, tous deux efficaces dans moins de 50% des cas : la prescription
d’opioïdes, au risque d’une mauvaise utilisation ou d’un abus qui pourrait entraîner des
décès par surdose, ou la stimulation médullaire, une nouvelle stratégie thérapeutique
prometteuse. Ces deux solutions sont sous-optimales en raison du manque de connaissances sur les mécanismes à l’origine de la douleur.
Cette thèse se concentre sur la modélisation du comportement des neurones de la
corne dorsale (NCD), qui sont des neurones de la moelle épinière intégrés dans le réseau
assurant la transmission du signal de la douleur au cerveau. Ce groupe de neurones
présente quatre types de comportements : le tonique, l’accéléré, les potentiels de plateau
et les rafales. Chaque modèle est supposé correspondre à un type d’état fonctionnel
dans le traitement de la douleur. En nous basant sur certaines des rares tentatives
de modélisation, nous avons développé un modèle des comportements des DHN. Notre
objectif est de comprendre le rôle de chaque échelle de temps dans la génération des
comportements des DHNs et le type de rétroaction impliqué dans l’excitabilité de ces
neurones, qui est soit restoratif, soit régénératif.
Plus précisément, cette thèse suit une procédure incrémentale à partir d’un modèle
integrate-and-fire 2D avec un feedback rapide et un feedback lente. L’impact de la nature
de la rétroaction lente (restorative ou regénérative) sur le plan de phase et les réponses
temporelles est étudié. Le feedback lent regénératif implique des propriétés spécifiques
aux neurones possédant des canaux calciques, telles que la bistabilité, la latence de la
réponse et le potentiel de post-dépolarisation. La rétroaction lente restorative permet de
toujours converger vers le repos sans perturbations. Ensemble, ces deux feedbacks sont
capables de simuler des comportements toniques.
Ensuite, nous avons créé un modèle 3D avec une rétroaction rapide, une rétroaction
lente régénérative et une rétroaction restorative ultra-lente. L’analyse de ce nouveau
modèle a révélé que le feedback supplémentaire ultra-lent est impliqué dans la génération
du bursting. En effet, la rétroaction ultra-lente offre une modulation du courant total
appliqué dans le modèle 2D équivalent.
En suivant la procédure incrémentale, le modèle 4D final consiste en une rétroaction
rapide, une rétroaction régénérative lente, une rétroaction régénérative super lente et une
rétroaction restorative ultra lente. La rétroaction super-lente supplémentaire offre une
deuxième direction pour la modulation du courant total appliqué dans le modèle équivalent 2D en façonnant l’augmentation de la fréquence instantanée pendant le burst ou
avant de converger vers un cycle limite, dans le cas où la rétroaction ultra-lente est faible.
Le modèle 4D est capable de représenter tous les comportements des DHNs énoncés à
condition que la force de chaque feedback soit bien choisie. Ce résultat permet de mieux
comprendre les mécanismes fonctionnels à l’origine du changement d’excitabilité.
Dans des travaux ultérieurs, il serait intéressant de vérifier que les modèles basés sur la
conductance suivent les mécanismes que nous avons mis en évidence. De plus, un modèle
du réseau de traitement de la douleur au niveau de la moelle épinière pourrait révéler
d’autres directions de modulation de l’excitabilité des NCD sur lesquelles de nouveaux
designs de traitements pharmacologiques ou de neurostimulation pourraient agir.


Dissertation
Interactions between synaptic plasticity and switches in brain states for memory consolidation: a modeling study
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Once a day, every individual lay down and becomes unconscious. Isn’t sleep a strange thing to do? Despite the risks associated with it, our ancestors used to sleep too, suggesting that it should provide an evolutionary advantage. Thus, it raises a fundamental question: why do we sleep? Among all essential functions of sleep, research has proved its preponderant role in memory formation and consolidation. 
At the cellular level, memory is achieved through processes referred to as synaptic plasticity and translating the remarkable ability of the brain to constantly evolve due to various stimuli. Furthermore, differences in the neuronal firing patterns have been highlighted between wake and sleep: during sleep, neurons are bursting while during wake, neurons show a tonic firing pattern. 

Memory is an abstract concept, it is not a simple task to understand the processes behind it. As experimental evidence provides insights about how plasticity is induced, modeling techniques reproducing experimental data can give insights about memory mechanisms. Literature is broad concerning plasticity modeling. In this work, a concise review of phenomenological models is conducted.

Then, some of them are implemented in a conductance-based model able to switch from waking to sleep, i.e. from tonic to bursting activity. Compared to simplified spiking neuron model, this conductance-based model is a powerful tool to be able to faithfully replicate neuronal behavior in waking and sleeping period. Reproduction of experimental protocols is carried in tonic mode as well as the impact of variability in the firing pattern to mimic more in vivo situations. As the ultimate goal of this thesis is to see the impact of existing models on memory consolidation during sleep, their robustness and behaviour during a bursting period are investigated. It led to unsatisfactory results regarding memory consolidation, highlighting the limitations of those phenomenological models. The behaviour of the models implemented highly depends on the method used to bound the synaptic weight in-between extreme values. Finally, insights about neuromodulation are suggested as improvements.

Listing 1 - 10 of 10
Sort by