Narrow your search

Library

KU Leuven (9)

ULiège (9)

FARO (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

VIVES (7)

Vlaams Parlement (7)

More...

Resource type

book (21)


Language

English (21)


Year
From To Submit

2021 (21)

Listing 1 - 10 of 21 << page
of 3
>>
Sort by

Book
Modeling lithium diffusion in battery cathodes considering chemo-mechanically induced damage
Authors: ---
Year: 2021 Publisher: [Golden, Colo.] : National Renewable Energy Laboratory,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Modeling lithium diffusion in battery cathodes considering chemo-mechanically induced damage
Authors: ---
Year: 2021 Publisher: [Golden, Colo.] : National Renewable Energy Laboratory,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
The middle way : a non-fundamental approach to many-body physics
Author:
ISBN: 9780197568613 9780197568620 9780197568637 0197568610 Year: 2021 Publisher: Oxford : Oxford University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Robert W. Batterman's monograph examines a ubiquitous methodology in physics and the science of materials that has virtually been ignored in the philosophical literature. This method focuses on mesoscale structures as a means for investigating complex many-body systems. It challenges foundational pictures of physics where the most important properties are taken to be found at lower, more fundamental scales.This so-called "hydrodynamic approach" has its origins in Einstein's pioneering work on Brownian motion. This work can be understood to be one of the first instances of "upscaling" or homogenization whereby values for effective continuum scale parameters can be theoretically determined. Einstein also provided the first statement of what came to be called the "Fluctuation-Dissipation" theorem. This theorem justifies the use of equilibrium statistical mechanics to study the nonequilibrium behaviors of many-body systems.Batterman focuses on the consequences of the Fluctuation-Dissipation theorem for a proper understanding of what can be considered natural parameters or natural kinds for studying behaviors of such systems. He challenges various claims that such natural, or joint carving, parameters are always to be found at the most fundamental level. Overall, Batterman argues for mesoscale first, middle-out approach to many questions concerning the relationships between fundamental theories and their phenomenological, continuum scale cousins.


Book
Mesoscale Analysis of Hydraulics
Author:
ISBN: 9811597855 9811597847 Year: 2021 Publisher: Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This open access book presents a series of complicated hydraulic phenomena and related mechanism of high-speed flows in head-head dam. According to the basic hydraulic theory, detailed experiments and numerical simulations, microscopic scale analysis on cavitation bubbles, air bubbles, turbulent eddy vortices and sand grains are examined systemically. These investigations on microscopic fluid mechanics, including cavitation erosion, aeration protection, air–water flow, energy dissipation and river-bed scouring, allow a deep understanding of hydraulics in high-head dams. This book provides reference for designers and researchers in hydraulic engineering, environment engineering and fluid mechanics.


Book
Brittle Materials in Mechanical Extremes
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The goal of the Special Issue “Brittle Materials in Mechanical Extremes” is to spark a discussion of the analogies and the differences between different brittle materials, such as ceramics and concrete. The contributions to the Issue span from construction materials (asphalt and concrete) to structural ceramics to ice. Data reported in the Issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offers an unconventional viewpoint on the behavior of such materials. While it is by no means exhaustive, this Special Issue paves the road for the fundamental understanding and further development of materials.


Book
Environmental Hydraulics Research
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to provide research and engineering applications related to water and hydraulic problems. It is comprised of scientific papers in all topics of hydraulics, in particular, on sustainable water management, environmental hydraulics, ecohydraulics, water–energy nexus, and systems protection and efficiency. Safety and innovation issues, interdisciplinary problems, and linkage of theory to experimental and field applications can also be found within. Solutions of water problems in the form of prediction models, flow simulations, engineering systems, monitoring, management strategies covering scientific investigations and/or experimental or field studies of flow behaviour, hydrodynamics, and climate changes effects and adaptation, new design solutions, innovative approaches in the field of environment, hydraulics, techniques, methods, and analyses to address the new challenges in environmental hydraulics are alo presented and explored. This topic is studied both from a technical and environmental point of view, with the objective of protecting and enhancing the quality of the environment. In a cross-disciplinary field of study, this book comprises open channel/river flows and pressurised systems, combining, among others, new technological, social, and environmental hydraulic challenges, working in water-related fields with available information, new concepts and tools, new design solutions, eco-friendly technologies, and the advanced materials necessary to address the increasing challenges of ensuring a sustainable water environment by promoting the adaptation, flexibility, integration, and sustainability of recognised environmental solutions.

Keywords

Technology: general issues --- water well --- hydraulic efficiency --- degradation --- engineering structure --- well ageing --- lifespan --- well operation --- water well management --- sustainable efficiency --- frozen soil --- soil freezing curve --- hydraulic conductivity --- fractal model --- Darcy’s law --- dissolved phosphorus --- hydrodynamic condition --- Lattice Boltzmann method --- release characteristics --- stormwater reuse --- SCS curve number --- CFD --- fecal indicator bacteria --- E. coli --- fish protection --- head loss --- intake --- hydraulics of renewable energy systems --- hydraulic structure design and management --- scale model test --- canal pool --- delay time --- volume compensation --- feedforward control --- downstream constant water level --- toothed internal energy dissipaters (TIED) --- area contraction ratio --- over-current capability --- energy dissipation rate --- time-averaged pressure --- pulsating pressure --- time-averaged velocity --- pulsating velocity --- water level --- Three Gorges Dam --- hydrodynamic model --- river–lake system --- Poyang Lake --- jet falling --- energy dissipation --- surface disturbances --- pressure fluctuations --- water jet --- physical modeling --- water flow diversity --- permeable spur dike --- fish aggregation effect --- channel regulation --- suspended vegetation --- FTW --- ADV --- velocity profile --- submerge ratio --- SVF --- hydro-energy --- CAES --- transient flow --- energy concept --- energy storage --- similarity law --- erosion --- cohesive sediments --- rotating circular flume --- mathematical modelling --- fitting coefficients --- sediment deposition --- flocculation --- bed shear stress --- consolidation --- hydrostatic pressure machine --- micro hydropower --- open source --- sliding mesh --- volume of fluid --- caffa3d --- pumped hydro storage (PHS) --- hybrid hydro-wind-solar solutions --- technical feasibility --- new power generation --- new hydraulic concepts --- sustainable developments --- CFD models --- water systems efficiency --- hydropower systems --- eco-design --- environmentally-friendly solutions --- hydrologic and ecologic challenges --- hydraulic structures --- free surface flows --- pressurised flows --- soil structure --- groundwater --- erosion and energy dissipaters --- hydrodynamics


Book
Environmental Hydraulics Research
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to provide research and engineering applications related to water and hydraulic problems. It is comprised of scientific papers in all topics of hydraulics, in particular, on sustainable water management, environmental hydraulics, ecohydraulics, water–energy nexus, and systems protection and efficiency. Safety and innovation issues, interdisciplinary problems, and linkage of theory to experimental and field applications can also be found within. Solutions of water problems in the form of prediction models, flow simulations, engineering systems, monitoring, management strategies covering scientific investigations and/or experimental or field studies of flow behaviour, hydrodynamics, and climate changes effects and adaptation, new design solutions, innovative approaches in the field of environment, hydraulics, techniques, methods, and analyses to address the new challenges in environmental hydraulics are alo presented and explored. This topic is studied both from a technical and environmental point of view, with the objective of protecting and enhancing the quality of the environment. In a cross-disciplinary field of study, this book comprises open channel/river flows and pressurised systems, combining, among others, new technological, social, and environmental hydraulic challenges, working in water-related fields with available information, new concepts and tools, new design solutions, eco-friendly technologies, and the advanced materials necessary to address the increasing challenges of ensuring a sustainable water environment by promoting the adaptation, flexibility, integration, and sustainability of recognised environmental solutions.

Keywords

water well --- hydraulic efficiency --- degradation --- engineering structure --- well ageing --- lifespan --- well operation --- water well management --- sustainable efficiency --- frozen soil --- soil freezing curve --- hydraulic conductivity --- fractal model --- Darcy’s law --- dissolved phosphorus --- hydrodynamic condition --- Lattice Boltzmann method --- release characteristics --- stormwater reuse --- SCS curve number --- CFD --- fecal indicator bacteria --- E. coli --- fish protection --- head loss --- intake --- hydraulics of renewable energy systems --- hydraulic structure design and management --- scale model test --- canal pool --- delay time --- volume compensation --- feedforward control --- downstream constant water level --- toothed internal energy dissipaters (TIED) --- area contraction ratio --- over-current capability --- energy dissipation rate --- time-averaged pressure --- pulsating pressure --- time-averaged velocity --- pulsating velocity --- water level --- Three Gorges Dam --- hydrodynamic model --- river–lake system --- Poyang Lake --- jet falling --- energy dissipation --- surface disturbances --- pressure fluctuations --- water jet --- physical modeling --- water flow diversity --- permeable spur dike --- fish aggregation effect --- channel regulation --- suspended vegetation --- FTW --- ADV --- velocity profile --- submerge ratio --- SVF --- hydro-energy --- CAES --- transient flow --- energy concept --- energy storage --- similarity law --- erosion --- cohesive sediments --- rotating circular flume --- mathematical modelling --- fitting coefficients --- sediment deposition --- flocculation --- bed shear stress --- consolidation --- hydrostatic pressure machine --- micro hydropower --- open source --- sliding mesh --- volume of fluid --- caffa3d --- pumped hydro storage (PHS) --- hybrid hydro-wind-solar solutions --- technical feasibility --- new power generation --- new hydraulic concepts --- sustainable developments --- CFD models --- water systems efficiency --- hydropower systems --- eco-design --- environmentally-friendly solutions --- hydrologic and ecologic challenges --- hydraulic structures --- free surface flows --- pressurised flows --- soil structure --- groundwater --- erosion and energy dissipaters --- hydrodynamics


Book
Shape Memory Alloys 2020
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative solutions and alternatives in biomedical applications and advanced engineering structures for aerospace and automotive industries as well as in sensor and actuation systems, among other sectors. Irrespective of this, designing and engineering using these special smart materials requires a solid background in materials science in order to consolidate their importance in these fields and to broaden their relevance for other new applications. The goal of this Special Issue is to foster the dissemination of some of the latest research devoted to these special materials from different perspectives.

Keywords

Technology: general issues --- shape memory alloys --- cyclic tests --- fatigue test --- energy dissipation --- earthquake engineering --- NiTiNb --- anisotropy --- texture --- SME --- pipe joints --- NiTi --- selective laser melting --- additive manufacturing --- lattice structure --- EBSD --- superelasticity --- metamagnetic shape memory alloys --- structural defects --- magnetocaloric effect --- mechanical damping --- martensitic transitions --- phonon softening --- resonant ultrasound spectroscopy --- laser-ultrasound --- elastic constants --- high-temperature shape memory alloys --- titanium palladium --- titanium platinum --- multi-component alloys --- medium-entropy alloys --- high-entropy alloys --- laser powder bed fusion --- density control --- structure control --- process simulation --- shape memory alloy --- Fe-Mn-Al-Ni --- cyclic heat treatment --- co-based Heusler alloy --- martensitic transformation --- metamagnetic shape memory alloy --- phase diagram --- magnetic-field-induced transition --- intermetallic --- microstructure --- differential scanning calorimetry --- X-ray diffraction --- mechanical testing --- shape memory alloys --- cyclic tests --- fatigue test --- energy dissipation --- earthquake engineering --- NiTiNb --- anisotropy --- texture --- SME --- pipe joints --- NiTi --- selective laser melting --- additive manufacturing --- lattice structure --- EBSD --- superelasticity --- metamagnetic shape memory alloys --- structural defects --- magnetocaloric effect --- mechanical damping --- martensitic transitions --- phonon softening --- resonant ultrasound spectroscopy --- laser-ultrasound --- elastic constants --- high-temperature shape memory alloys --- titanium palladium --- titanium platinum --- multi-component alloys --- medium-entropy alloys --- high-entropy alloys --- laser powder bed fusion --- density control --- structure control --- process simulation --- shape memory alloy --- Fe-Mn-Al-Ni --- cyclic heat treatment --- co-based Heusler alloy --- martensitic transformation --- metamagnetic shape memory alloy --- phase diagram --- magnetic-field-induced transition --- intermetallic --- microstructure --- differential scanning calorimetry --- X-ray diffraction --- mechanical testing


Book
Brittle Materials in Mechanical Extremes
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The goal of the Special Issue “Brittle Materials in Mechanical Extremes” is to spark a discussion of the analogies and the differences between different brittle materials, such as ceramics and concrete. The contributions to the Issue span from construction materials (asphalt and concrete) to structural ceramics to ice. Data reported in the Issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offers an unconventional viewpoint on the behavior of such materials. While it is by no means exhaustive, this Special Issue paves the road for the fundamental understanding and further development of materials.

Keywords

Research & information: general --- Technology: general issues --- restraint --- creep --- double feedback method --- concrete --- temperature stress testing machine (TSTM) --- alkali-activated slag --- elevated temperatures --- Na2O concentration --- residual strength --- brittleness --- melting --- Fiber-reinforced concrete --- X-ray computed tomography (CT) --- anisotropic fiber orientation --- inverse analysis --- silica --- super-insulating materials --- instrumented indentation --- porosity --- electro-fused zirconia --- microcracking --- synchrotron x-ray refraction radiography (SXRR) --- thermal expansion --- ice --- high rate loading --- compressive loading --- Split Hopkinson bar --- in-situ fractography --- biomaterials --- bioceramics --- coating --- mechanical properties --- existing buildings --- reinforced concrete --- seismic vulnerability assessment --- in situ concrete strength --- variability of concrete strength --- high speed railway --- SBS/CR modified asphalt --- long-term aging --- anti-aging --- engineered cementitious composites --- steel grid --- fiber --- tensile capacity --- energy dissipation --- ceramics --- asphalt --- microstructure --- strength --- restraint --- creep --- double feedback method --- concrete --- temperature stress testing machine (TSTM) --- alkali-activated slag --- elevated temperatures --- Na2O concentration --- residual strength --- brittleness --- melting --- Fiber-reinforced concrete --- X-ray computed tomography (CT) --- anisotropic fiber orientation --- inverse analysis --- silica --- super-insulating materials --- instrumented indentation --- porosity --- electro-fused zirconia --- microcracking --- synchrotron x-ray refraction radiography (SXRR) --- thermal expansion --- ice --- high rate loading --- compressive loading --- Split Hopkinson bar --- in-situ fractography --- biomaterials --- bioceramics --- coating --- mechanical properties --- existing buildings --- reinforced concrete --- seismic vulnerability assessment --- in situ concrete strength --- variability of concrete strength --- high speed railway --- SBS/CR modified asphalt --- long-term aging --- anti-aging --- engineered cementitious composites --- steel grid --- fiber --- tensile capacity --- energy dissipation --- ceramics --- asphalt --- microstructure --- strength


Book
Shape Memory Alloys 2020
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative solutions and alternatives in biomedical applications and advanced engineering structures for aerospace and automotive industries as well as in sensor and actuation systems, among other sectors. Irrespective of this, designing and engineering using these special smart materials requires a solid background in materials science in order to consolidate their importance in these fields and to broaden their relevance for other new applications. The goal of this Special Issue is to foster the dissemination of some of the latest research devoted to these special materials from different perspectives.

Listing 1 - 10 of 21 << page
of 3
>>
Sort by