Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Sea Surface Temperature: From Observation to Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book covers a broad range of sea surface temperature studies from very different points of view and scales; the SST is observed from very local to regional and oceanic scales. The chapters of this book move from local and remote data sensing validation to local and regional trend analysis, and also give some insight into marine heatwaves and future climate scenarios.


Book
Sea Surface Temperature: From Observation to Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book covers a broad range of sea surface temperature studies from very different points of view and scales; the SST is observed from very local to regional and oceanic scales. The chapters of this book move from local and remote data sensing validation to local and regional trend analysis, and also give some insight into marine heatwaves and future climate scenarios.


Book
Sea Surface Temperature: From Observation to Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book covers a broad range of sea surface temperature studies from very different points of view and scales; the SST is observed from very local to regional and oceanic scales. The chapters of this book move from local and remote data sensing validation to local and regional trend analysis, and also give some insight into marine heatwaves and future climate scenarios.


Book
Climate variability and change in the 21th Century
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.

Keywords

Research & information: general --- California --- hydrologic regions --- warming --- drought --- regional climate modeling --- hydrological modeling --- bias correction --- multivariate --- pseudo reality --- rainfall --- trend analysis --- Mann–Kendall --- kriging interpolation --- multiple climate models --- standardized precipitation index (SPI) --- droughts --- weights --- Vu Gia-Thu Bon --- climate change --- optimal control --- geoengineering --- climate manipulation --- GCM --- RCM --- CMIP5 --- CORDEX --- climate model selection --- upper Indus basin --- NDVI --- ENSO --- wavelet --- time series analysis --- Hluhluwe-iMfolozi Park --- Google Earth Engine --- Mediterranean climate --- cluster analysis --- objective classification --- ERA5 --- mega-fires --- Bayesian-model averaging --- model uncertainty --- climate-fire models --- Mono River watershed --- climate --- temperature --- heat wave --- excess heat factor --- acclimatization --- Greece --- precipitations --- Hurst exponent --- persistence --- spatial correlation --- Caucasian region --- Regional Climate Model --- climate classification --- bias correction methods --- precipitation --- terrestrial ecosystems --- GPP --- LAI --- CO2 fertilization effect --- feedback --- sassandra watershed --- Côte d’Ivoire --- boreal region --- extreme wind speed --- wind climate --- soil frost --- wind damage risk management --- wind multiplier --- downscaling --- topography --- surface roughness --- VIIRS --- MODIS --- OLCI --- RSB --- SNPP --- Terra --- Aqua --- Sentinel-3A --- reflective solar bands --- intersensor comparison --- intercalibration --- SNO --- climate indices --- climate change and Conakry


Book
Climate variability and change in the 21th Century
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.

Keywords

Research & information: general --- California --- hydrologic regions --- warming --- drought --- regional climate modeling --- hydrological modeling --- bias correction --- multivariate --- pseudo reality --- rainfall --- trend analysis --- Mann–Kendall --- kriging interpolation --- multiple climate models --- standardized precipitation index (SPI) --- droughts --- weights --- Vu Gia-Thu Bon --- climate change --- optimal control --- geoengineering --- climate manipulation --- GCM --- RCM --- CMIP5 --- CORDEX --- climate model selection --- upper Indus basin --- NDVI --- ENSO --- wavelet --- time series analysis --- Hluhluwe-iMfolozi Park --- Google Earth Engine --- Mediterranean climate --- cluster analysis --- objective classification --- ERA5 --- mega-fires --- Bayesian-model averaging --- model uncertainty --- climate-fire models --- Mono River watershed --- climate --- temperature --- heat wave --- excess heat factor --- acclimatization --- Greece --- precipitations --- Hurst exponent --- persistence --- spatial correlation --- Caucasian region --- Regional Climate Model --- climate classification --- bias correction methods --- precipitation --- terrestrial ecosystems --- GPP --- LAI --- CO2 fertilization effect --- feedback --- sassandra watershed --- Côte d’Ivoire --- boreal region --- extreme wind speed --- wind climate --- soil frost --- wind damage risk management --- wind multiplier --- downscaling --- topography --- surface roughness --- VIIRS --- MODIS --- OLCI --- RSB --- SNPP --- Terra --- Aqua --- Sentinel-3A --- reflective solar bands --- intersensor comparison --- intercalibration --- SNO --- climate indices --- climate change and Conakry


Book
Climate variability and change in the 21th Century
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.

Keywords

California --- hydrologic regions --- warming --- drought --- regional climate modeling --- hydrological modeling --- bias correction --- multivariate --- pseudo reality --- rainfall --- trend analysis --- Mann–Kendall --- kriging interpolation --- multiple climate models --- standardized precipitation index (SPI) --- droughts --- weights --- Vu Gia-Thu Bon --- climate change --- optimal control --- geoengineering --- climate manipulation --- GCM --- RCM --- CMIP5 --- CORDEX --- climate model selection --- upper Indus basin --- NDVI --- ENSO --- wavelet --- time series analysis --- Hluhluwe-iMfolozi Park --- Google Earth Engine --- Mediterranean climate --- cluster analysis --- objective classification --- ERA5 --- mega-fires --- Bayesian-model averaging --- model uncertainty --- climate-fire models --- Mono River watershed --- climate --- temperature --- heat wave --- excess heat factor --- acclimatization --- Greece --- precipitations --- Hurst exponent --- persistence --- spatial correlation --- Caucasian region --- Regional Climate Model --- climate classification --- bias correction methods --- precipitation --- terrestrial ecosystems --- GPP --- LAI --- CO2 fertilization effect --- feedback --- sassandra watershed --- Côte d’Ivoire --- boreal region --- extreme wind speed --- wind climate --- soil frost --- wind damage risk management --- wind multiplier --- downscaling --- topography --- surface roughness --- VIIRS --- MODIS --- OLCI --- RSB --- SNPP --- Terra --- Aqua --- Sentinel-3A --- reflective solar bands --- intersensor comparison --- intercalibration --- SNO --- climate indices --- climate change and Conakry

Listing 1 - 6 of 6
Sort by