Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Mitochondria: From Physiology to Pathology
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondria play an increasingly central role in the context of cellular physiology. These organelles possess their own genome (mtDNA), which is functionally coordinated with the nuclear genome. Mitochondrial gene expression is mediated by molecular processes (replication, transcription, translation, and assembly of respiratory chain complexes) that all take place within the mitochondria. Several aspects of mtDNA expression have already been well characterized, but many more either are under debate or have yet to be discovered. Understanding the molecular processes occurring in mitochondria also has clinical relevance. Dysfunctions affecting these important metabolic ‘hubs’ are associated with a whole range of severe disorders, known as mitochondrial diseases. In recent years, significant progress has been made to understand the pathogenic mechanisms underlying mitochondrial dysfunction; however, to date, mitochondrial diseases are complex genetic disorders without any effective therapy. Current therapeutic strategies and clinical trials are aimed at mitigating clinical manifestations and slowing the disease progression to improve the quality of life of patients. The goal of the Special Issue ‘Mitochondria: from Physiology to Pathology’ published in Life (ISSN: 2075-1729) was to collect research and review articles covering the physiological and pathological aspects related to mtDNA maintenance and gene expression, mitochondrial biogenesis, protein import, organelle metabolism, and quality control.


Book
Mitochondria: From Physiology to Pathology
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondria play an increasingly central role in the context of cellular physiology. These organelles possess their own genome (mtDNA), which is functionally coordinated with the nuclear genome. Mitochondrial gene expression is mediated by molecular processes (replication, transcription, translation, and assembly of respiratory chain complexes) that all take place within the mitochondria. Several aspects of mtDNA expression have already been well characterized, but many more either are under debate or have yet to be discovered. Understanding the molecular processes occurring in mitochondria also has clinical relevance. Dysfunctions affecting these important metabolic ‘hubs’ are associated with a whole range of severe disorders, known as mitochondrial diseases. In recent years, significant progress has been made to understand the pathogenic mechanisms underlying mitochondrial dysfunction; however, to date, mitochondrial diseases are complex genetic disorders without any effective therapy. Current therapeutic strategies and clinical trials are aimed at mitigating clinical manifestations and slowing the disease progression to improve the quality of life of patients. The goal of the Special Issue ‘Mitochondria: from Physiology to Pathology’ published in Life (ISSN: 2075-1729) was to collect research and review articles covering the physiological and pathological aspects related to mtDNA maintenance and gene expression, mitochondrial biogenesis, protein import, organelle metabolism, and quality control.


Book
Mitochondria: From Physiology to Pathology
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondria play an increasingly central role in the context of cellular physiology. These organelles possess their own genome (mtDNA), which is functionally coordinated with the nuclear genome. Mitochondrial gene expression is mediated by molecular processes (replication, transcription, translation, and assembly of respiratory chain complexes) that all take place within the mitochondria. Several aspects of mtDNA expression have already been well characterized, but many more either are under debate or have yet to be discovered. Understanding the molecular processes occurring in mitochondria also has clinical relevance. Dysfunctions affecting these important metabolic ‘hubs’ are associated with a whole range of severe disorders, known as mitochondrial diseases. In recent years, significant progress has been made to understand the pathogenic mechanisms underlying mitochondrial dysfunction; however, to date, mitochondrial diseases are complex genetic disorders without any effective therapy. Current therapeutic strategies and clinical trials are aimed at mitigating clinical manifestations and slowing the disease progression to improve the quality of life of patients. The goal of the Special Issue ‘Mitochondria: from Physiology to Pathology’ published in Life (ISSN: 2075-1729) was to collect research and review articles covering the physiological and pathological aspects related to mtDNA maintenance and gene expression, mitochondrial biogenesis, protein import, organelle metabolism, and quality control.


Book
Bacillus thuringiensis Toxins: Functional Characterization and Mechanism of Action
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacillus thuringiensis (Bt)-based products are the most successful microbial insecticides to date. This entomopathogenic bacterium produces different kinds of proteins whose specific toxicity has been shown against a wide range of insect orders, nematodes, mites, protozoa, and human cancer cells. Some of these proteins are accumulated in parasporal crystals during the sporulation phase (Cry and Cyt proteins), whereas other proteins are secreted in the vegetative phase of growth (Vip and Sip toxins). Currently, insecticidal proteins belonging to different groups (Cry and Vip3 proteins) are widely used to control insect pests and vectors both in formulated sprays and in transgenic crops (the so-called Bt crops). Despite the extensive use of these proteins in insect pest control, especially Cry and Vip3, their mode of action is not completely understood. The aim of this Special Issue was to gather information that could summarize (in the form of review papers) or expand (research papers) the knowledge of the structure and function of Bt proteins, as well as shed light on their mode of action, especially regarding the insect receptors. This subject has generated great interest, and this interest has been materialized into the 18 papers of important scientific value in the field (5 reviews and 13 research papers) that have been compiled in this issue.

Keywords

Research & information: general --- Bacillus thuringiensis --- Plutella xylostella --- Cry1Ac resistance --- trypsin-like midgut protease --- protoxin activation --- Spodoptera spp., Helicoverpa armigera --- Mamestra brassicae --- Anticarsia gemmatalis --- Ostrinia furnacalis --- Cry2Ab toxin --- Bombyx mori --- ATP-binding cassette subfamily a member 2 (ABCA2) --- genome editing --- transcription activator-like effector-nucleases (TALENs) --- HEK293T cell --- functional receptor --- Vip3Aa --- lysosome --- mitochondria --- apoptosis --- Sf9 cells --- Cry1Ab --- oligomer formation --- Sf21 cell line --- Ostrinia nubilalis --- Lobesia botrana --- Leptinotarsa decemlineata --- bioassay --- Cyt2Aa2 toxin --- protein-lipid binding --- erythrocyte membrane --- AFM --- QCM-D --- Asian corn borer --- ABCC2 --- CRISPR/Cas9 --- Cry1Fa --- resistance --- chitin-binding protein --- adhesion --- peritrophic matrix --- Vip3A --- Spodoptera litura --- site-directed mutagenesis --- Cry --- Cyt --- parasporins --- S-layer proteins --- Vip --- Sip --- membrane receptors --- insecticidal activity --- anticancer activity --- Aedes aegypti --- minor proteins --- synergy --- mosquito control --- Bti --- Spodoptera frugiperda --- cadherin --- mode of action of Cry toxin --- insecticidal proteins --- insect resistance --- tobacco budworm --- Bacillus thuringiensis proteins --- coleopteran pests --- structure --- mode of action --- 3D-structure --- biological control --- antimicrobial peptide --- gut microbiota --- vegetative insecticidal proteins --- pyramids --- 3D-Cry toxins --- in vitro evolution --- rational design --- toxin enhancement --- n/a


Book
Bacillus thuringiensis Toxins: Functional Characterization and Mechanism of Action
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacillus thuringiensis (Bt)-based products are the most successful microbial insecticides to date. This entomopathogenic bacterium produces different kinds of proteins whose specific toxicity has been shown against a wide range of insect orders, nematodes, mites, protozoa, and human cancer cells. Some of these proteins are accumulated in parasporal crystals during the sporulation phase (Cry and Cyt proteins), whereas other proteins are secreted in the vegetative phase of growth (Vip and Sip toxins). Currently, insecticidal proteins belonging to different groups (Cry and Vip3 proteins) are widely used to control insect pests and vectors both in formulated sprays and in transgenic crops (the so-called Bt crops). Despite the extensive use of these proteins in insect pest control, especially Cry and Vip3, their mode of action is not completely understood. The aim of this Special Issue was to gather information that could summarize (in the form of review papers) or expand (research papers) the knowledge of the structure and function of Bt proteins, as well as shed light on their mode of action, especially regarding the insect receptors. This subject has generated great interest, and this interest has been materialized into the 18 papers of important scientific value in the field (5 reviews and 13 research papers) that have been compiled in this issue.

Keywords

Research & information: general --- Bacillus thuringiensis --- Plutella xylostella --- Cry1Ac resistance --- trypsin-like midgut protease --- protoxin activation --- Spodoptera spp., Helicoverpa armigera --- Mamestra brassicae --- Anticarsia gemmatalis --- Ostrinia furnacalis --- Cry2Ab toxin --- Bombyx mori --- ATP-binding cassette subfamily a member 2 (ABCA2) --- genome editing --- transcription activator-like effector-nucleases (TALENs) --- HEK293T cell --- functional receptor --- Vip3Aa --- lysosome --- mitochondria --- apoptosis --- Sf9 cells --- Cry1Ab --- oligomer formation --- Sf21 cell line --- Ostrinia nubilalis --- Lobesia botrana --- Leptinotarsa decemlineata --- bioassay --- Cyt2Aa2 toxin --- protein-lipid binding --- erythrocyte membrane --- AFM --- QCM-D --- Asian corn borer --- ABCC2 --- CRISPR/Cas9 --- Cry1Fa --- resistance --- chitin-binding protein --- adhesion --- peritrophic matrix --- Vip3A --- Spodoptera litura --- site-directed mutagenesis --- Cry --- Cyt --- parasporins --- S-layer proteins --- Vip --- Sip --- membrane receptors --- insecticidal activity --- anticancer activity --- Aedes aegypti --- minor proteins --- synergy --- mosquito control --- Bti --- Spodoptera frugiperda --- cadherin --- mode of action of Cry toxin --- insecticidal proteins --- insect resistance --- tobacco budworm --- Bacillus thuringiensis proteins --- coleopteran pests --- structure --- mode of action --- 3D-structure --- biological control --- antimicrobial peptide --- gut microbiota --- vegetative insecticidal proteins --- pyramids --- 3D-Cry toxins --- in vitro evolution --- rational design --- toxin enhancement --- n/a


Book
Bacillus thuringiensis Toxins: Functional Characterization and Mechanism of Action
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Bacillus thuringiensis (Bt)-based products are the most successful microbial insecticides to date. This entomopathogenic bacterium produces different kinds of proteins whose specific toxicity has been shown against a wide range of insect orders, nematodes, mites, protozoa, and human cancer cells. Some of these proteins are accumulated in parasporal crystals during the sporulation phase (Cry and Cyt proteins), whereas other proteins are secreted in the vegetative phase of growth (Vip and Sip toxins). Currently, insecticidal proteins belonging to different groups (Cry and Vip3 proteins) are widely used to control insect pests and vectors both in formulated sprays and in transgenic crops (the so-called Bt crops). Despite the extensive use of these proteins in insect pest control, especially Cry and Vip3, their mode of action is not completely understood. The aim of this Special Issue was to gather information that could summarize (in the form of review papers) or expand (research papers) the knowledge of the structure and function of Bt proteins, as well as shed light on their mode of action, especially regarding the insect receptors. This subject has generated great interest, and this interest has been materialized into the 18 papers of important scientific value in the field (5 reviews and 13 research papers) that have been compiled in this issue.

Keywords

Bacillus thuringiensis --- Plutella xylostella --- Cry1Ac resistance --- trypsin-like midgut protease --- protoxin activation --- Spodoptera spp., Helicoverpa armigera --- Mamestra brassicae --- Anticarsia gemmatalis --- Ostrinia furnacalis --- Cry2Ab toxin --- Bombyx mori --- ATP-binding cassette subfamily a member 2 (ABCA2) --- genome editing --- transcription activator-like effector-nucleases (TALENs) --- HEK293T cell --- functional receptor --- Vip3Aa --- lysosome --- mitochondria --- apoptosis --- Sf9 cells --- Cry1Ab --- oligomer formation --- Sf21 cell line --- Ostrinia nubilalis --- Lobesia botrana --- Leptinotarsa decemlineata --- bioassay --- Cyt2Aa2 toxin --- protein-lipid binding --- erythrocyte membrane --- AFM --- QCM-D --- Asian corn borer --- ABCC2 --- CRISPR/Cas9 --- Cry1Fa --- resistance --- chitin-binding protein --- adhesion --- peritrophic matrix --- Vip3A --- Spodoptera litura --- site-directed mutagenesis --- Cry --- Cyt --- parasporins --- S-layer proteins --- Vip --- Sip --- membrane receptors --- insecticidal activity --- anticancer activity --- Aedes aegypti --- minor proteins --- synergy --- mosquito control --- Bti --- Spodoptera frugiperda --- cadherin --- mode of action of Cry toxin --- insecticidal proteins --- insect resistance --- tobacco budworm --- Bacillus thuringiensis proteins --- coleopteran pests --- structure --- mode of action --- 3D-structure --- biological control --- antimicrobial peptide --- gut microbiota --- vegetative insecticidal proteins --- pyramids --- 3D-Cry toxins --- in vitro evolution --- rational design --- toxin enhancement --- n/a

Listing 1 - 6 of 6
Sort by