Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (6)

Listing 1 - 6 of 6
Sort by

Book
Environmental Friendly Catalysts for Energy and Pollution Control Applications
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.


Book
Biofuels Production and Processing Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The negative impacts of global warming and global environmental pollution due to fossil fuels mean that the main challenge of modern society is finding alternatives to conventional fuels. In this scenario, biofuels derived from renewable biomass represent the most promising renewable energy sources. Depending on the biomass used by the fermentation technologies, it is possible to obtain first-generation biofuels produced from food crops, second-generation biofuels produced from non-food feedstock, mainly starting from renewable lignocellulosic biomasses, and third-generation biofuels, represented by algae or food waste biomass.Although biofuels appear to be the closest alternative to fossil fuels, it is necessary for them to be produced in competitive quantities and costs, requiring both improvements to production technologies and the diversification of feedstock. This Special Issue is focused on technological innovations, including the utilization of different feedstocks, with a particular focus on biethanol production from food waste; different biomass pretreatments; fermentation strategies, such as simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF); different applied microorganisms used as a monoculture or co-culture; and different setups for biofuel fermentation processes.The manuscripts collected represent a great opportunity for adding new knowledge to the scientific community as well as industry.

Keywords

Technology: general issues --- Biotechnology --- biofuels --- corn --- extraction --- enzyme-assisted --- protein --- soybean --- molecular sieve --- water removal --- rotary shaking --- electromagnetic stirring --- biofuel --- gasohol --- trend analysis --- promotion policy --- regulatory measure --- bottleneck --- synthesis gas fermentation --- volumetric mass transfer coefficient --- Tween 80® surfactant --- gasification --- multi-objective optimization --- bioethanol --- syngas fermentation --- modeling --- sustainability --- soapberry pericarp --- carbonization --- biochar --- pore property --- surface chemistry --- biomethane --- food waste --- co-production --- biorefinery --- bioelectrochemical system (BES) --- carbon dioxide sequestration --- extracellular electron transfer (EET) --- electroactive microorganisms --- microbial biocatalyst --- electro-fermentation --- circular economy --- downstream processing (DSP) --- gene manipulation --- biogas --- compost leachate --- pressurized anaerobic digestion --- ethanol --- simultaneous saccharification and fermentation --- Saccharomyces cerevisiae --- single cell protein --- pineapple waste --- cell wall sugar --- fermentation --- spent sugar beet pulp --- model --- economics --- pretreatment --- saccharification --- B. ceiba --- biomass --- second-generation biofuel --- bioenergy --- biodiesel --- non-fossil fuel --- empty fruit bunches --- response surface methodology --- central composite design --- biofuel production technologies --- downstream processing --- energy --- bioethanol production --- agroforest and industrial waste feedstock valorization --- microorganisms for biofuel


Book
Biofuels Production and Processing Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The negative impacts of global warming and global environmental pollution due to fossil fuels mean that the main challenge of modern society is finding alternatives to conventional fuels. In this scenario, biofuels derived from renewable biomass represent the most promising renewable energy sources. Depending on the biomass used by the fermentation technologies, it is possible to obtain first-generation biofuels produced from food crops, second-generation biofuels produced from non-food feedstock, mainly starting from renewable lignocellulosic biomasses, and third-generation biofuels, represented by algae or food waste biomass.Although biofuels appear to be the closest alternative to fossil fuels, it is necessary for them to be produced in competitive quantities and costs, requiring both improvements to production technologies and the diversification of feedstock. This Special Issue is focused on technological innovations, including the utilization of different feedstocks, with a particular focus on biethanol production from food waste; different biomass pretreatments; fermentation strategies, such as simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF); different applied microorganisms used as a monoculture or co-culture; and different setups for biofuel fermentation processes.The manuscripts collected represent a great opportunity for adding new knowledge to the scientific community as well as industry.

Keywords

Technology: general issues --- Biotechnology --- biofuels --- corn --- extraction --- enzyme-assisted --- protein --- soybean --- molecular sieve --- water removal --- rotary shaking --- electromagnetic stirring --- biofuel --- gasohol --- trend analysis --- promotion policy --- regulatory measure --- bottleneck --- synthesis gas fermentation --- volumetric mass transfer coefficient --- Tween 80® surfactant --- gasification --- multi-objective optimization --- bioethanol --- syngas fermentation --- modeling --- sustainability --- soapberry pericarp --- carbonization --- biochar --- pore property --- surface chemistry --- biomethane --- food waste --- co-production --- biorefinery --- bioelectrochemical system (BES) --- carbon dioxide sequestration --- extracellular electron transfer (EET) --- electroactive microorganisms --- microbial biocatalyst --- electro-fermentation --- circular economy --- downstream processing (DSP) --- gene manipulation --- biogas --- compost leachate --- pressurized anaerobic digestion --- ethanol --- simultaneous saccharification and fermentation --- Saccharomyces cerevisiae --- single cell protein --- pineapple waste --- cell wall sugar --- fermentation --- spent sugar beet pulp --- model --- economics --- pretreatment --- saccharification --- B. ceiba --- biomass --- second-generation biofuel --- bioenergy --- biodiesel --- non-fossil fuel --- empty fruit bunches --- response surface methodology --- central composite design --- biofuel production technologies --- downstream processing --- energy --- bioethanol production --- agroforest and industrial waste feedstock valorization --- microorganisms for biofuel


Book
Environmental Friendly Catalysts for Energy and Pollution Control Applications
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.


Book
Environmental Friendly Catalysts for Energy and Pollution Control Applications
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.


Book
Biofuels Production and Processing Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The negative impacts of global warming and global environmental pollution due to fossil fuels mean that the main challenge of modern society is finding alternatives to conventional fuels. In this scenario, biofuels derived from renewable biomass represent the most promising renewable energy sources. Depending on the biomass used by the fermentation technologies, it is possible to obtain first-generation biofuels produced from food crops, second-generation biofuels produced from non-food feedstock, mainly starting from renewable lignocellulosic biomasses, and third-generation biofuels, represented by algae or food waste biomass.Although biofuels appear to be the closest alternative to fossil fuels, it is necessary for them to be produced in competitive quantities and costs, requiring both improvements to production technologies and the diversification of feedstock. This Special Issue is focused on technological innovations, including the utilization of different feedstocks, with a particular focus on biethanol production from food waste; different biomass pretreatments; fermentation strategies, such as simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF); different applied microorganisms used as a monoculture or co-culture; and different setups for biofuel fermentation processes.The manuscripts collected represent a great opportunity for adding new knowledge to the scientific community as well as industry.

Keywords

biofuels --- corn --- extraction --- enzyme-assisted --- protein --- soybean --- molecular sieve --- water removal --- rotary shaking --- electromagnetic stirring --- biofuel --- gasohol --- trend analysis --- promotion policy --- regulatory measure --- bottleneck --- synthesis gas fermentation --- volumetric mass transfer coefficient --- Tween 80® surfactant --- gasification --- multi-objective optimization --- bioethanol --- syngas fermentation --- modeling --- sustainability --- soapberry pericarp --- carbonization --- biochar --- pore property --- surface chemistry --- biomethane --- food waste --- co-production --- biorefinery --- bioelectrochemical system (BES) --- carbon dioxide sequestration --- extracellular electron transfer (EET) --- electroactive microorganisms --- microbial biocatalyst --- electro-fermentation --- circular economy --- downstream processing (DSP) --- gene manipulation --- biogas --- compost leachate --- pressurized anaerobic digestion --- ethanol --- simultaneous saccharification and fermentation --- Saccharomyces cerevisiae --- single cell protein --- pineapple waste --- cell wall sugar --- fermentation --- spent sugar beet pulp --- model --- economics --- pretreatment --- saccharification --- B. ceiba --- biomass --- second-generation biofuel --- bioenergy --- biodiesel --- non-fossil fuel --- empty fruit bunches --- response surface methodology --- central composite design --- biofuel production technologies --- downstream processing --- energy --- bioethanol production --- agroforest and industrial waste feedstock valorization --- microorganisms for biofuel

Listing 1 - 6 of 6
Sort by