Narrow your search

Library

KU Leuven (5)

ULiège (5)

FARO (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

VIVES (4)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (9)

Listing 1 - 9 of 9
Sort by

Book
Role of MicroRNA in Cancer Development and Treatment
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many researchers around the world have demonstrated that the expression of miRNAs is dysregulated in different tumors. Such dysregulation is caused by multiple mechanisms, and exposure to different carcinogens causes dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. Cancer cells with abnormal miRNA expression evolve the capability to sustain proliferative signaling, evade growth suppressors, resist cell death, activate invasion and metastasis, and induce angiogenesis. Genome-wide profiling demonstrates that miRNA expression signatures are associated with tumor type, tumor grade and clinical outcomes, so miRNAs could be potential candidates for diagnostic biomarkers, prognostic biomarkers, therapeutic targets and preventive screening programs. Although miRNAs have multiple targets, their function in tumorigenesis is due to their regulation of a few specific targets. After the first detection of altered miRNA in leukemia, microRNAs have been demonstrated to be constantly altered in all cancer. More recently, microRNA has been shown to be altered by exposure to environmental carcinogens, thus driving the whole process of carcinogenesis. Our aim is to provide a rigorous peer review and publish cutting-edge research on the role of microRNA in cancer prevention therapy to educate and inspire the scientific community worldwide.


Book
Role of MicroRNA in Cancer Development and Treatment
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many researchers around the world have demonstrated that the expression of miRNAs is dysregulated in different tumors. Such dysregulation is caused by multiple mechanisms, and exposure to different carcinogens causes dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. Cancer cells with abnormal miRNA expression evolve the capability to sustain proliferative signaling, evade growth suppressors, resist cell death, activate invasion and metastasis, and induce angiogenesis. Genome-wide profiling demonstrates that miRNA expression signatures are associated with tumor type, tumor grade and clinical outcomes, so miRNAs could be potential candidates for diagnostic biomarkers, prognostic biomarkers, therapeutic targets and preventive screening programs. Although miRNAs have multiple targets, their function in tumorigenesis is due to their regulation of a few specific targets. After the first detection of altered miRNA in leukemia, microRNAs have been demonstrated to be constantly altered in all cancer. More recently, microRNA has been shown to be altered by exposure to environmental carcinogens, thus driving the whole process of carcinogenesis. Our aim is to provide a rigorous peer review and publish cutting-edge research on the role of microRNA in cancer prevention therapy to educate and inspire the scientific community worldwide.


Book
Role of MicroRNA in Cancer Development and Treatment
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many researchers around the world have demonstrated that the expression of miRNAs is dysregulated in different tumors. Such dysregulation is caused by multiple mechanisms, and exposure to different carcinogens causes dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. Cancer cells with abnormal miRNA expression evolve the capability to sustain proliferative signaling, evade growth suppressors, resist cell death, activate invasion and metastasis, and induce angiogenesis. Genome-wide profiling demonstrates that miRNA expression signatures are associated with tumor type, tumor grade and clinical outcomes, so miRNAs could be potential candidates for diagnostic biomarkers, prognostic biomarkers, therapeutic targets and preventive screening programs. Although miRNAs have multiple targets, their function in tumorigenesis is due to their regulation of a few specific targets. After the first detection of altered miRNA in leukemia, microRNAs have been demonstrated to be constantly altered in all cancer. More recently, microRNA has been shown to be altered by exposure to environmental carcinogens, thus driving the whole process of carcinogenesis. Our aim is to provide a rigorous peer review and publish cutting-edge research on the role of microRNA in cancer prevention therapy to educate and inspire the scientific community worldwide.


Book
Biomarkers in Neurodegenerative Diseases
Author:
ISBN: 303655730X 3036557296 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on the recent advancements in both fundamental and clinical research, focusing on identifying, developing, and applying new and improved biological markers for specific neurologic disorders in the future. The original research work and review articles published here highlight some unique mechanisms underlying the most prevalent pathophysiological conditions affecting human health. Other areas covered in the book include emerging treatment options and correct diagnoses using different biochemical and imaging techniques.


Book
Zero to birth : how the human brain is built
Author:
ISBN: 0691237077 9780691237077 Year: 2022 Publisher: Princeton, New Jersey ; Oxford : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A revelatory tale of how the human brain develops, from conception to birth and beyondBy the time a baby is born, its brain is equipped with billions of intricately crafted neurons wired together through trillions of interconnections to form a compact and breathtakingly efficient supercomputer. Zero to Birth takes you on an extraordinary journey to the very edge of creation, from the moment of an egg’s fertilization through each step of a human brain’s development in the womb—and even a little beyond.As pioneering experimental neurobiologist W. A. Harris guides you through the process of how the brain is built, he takes up the biggest questions that scientists have asked about the developing brain, describing many of the thrilling discoveries that were foundational to our current understanding. He weaves in a remarkable evolutionary story that begins billions of years ago in the Proterozoic eon, when multicellular animals first emerged from single-cell organisms, and reveals how the growth of a fetal brain over nine months reflects the brain’s evolution through the ages. Our brains have much in common with those of other animals, and Harris offers an illuminating look at how comparative animal studies have been crucial to understanding what makes a human brain human.An unforgettable chronicle of one of nature’s greatest achievements, Zero to Birth describes how the brain’s incredible feat of orchestrated growth ensures that every brain is unique, and how breakthroughs at the frontiers of science are helping us to decode many traits that only reveal themselves later in life.

Keywords

SCIENCE / Life Sciences / Neuroscience. --- Action potential. --- Agrin. --- Angiogenesis. --- Antibody. --- Apoptosis. --- Astrocyte. --- Axon guidance. --- Axon. --- Blastula. --- Brain asymmetry. --- Broca's area. --- Cancer cell. --- Cell type. --- Cerebral atrophy. --- Cerebral cortex. --- Charles Darwin. --- Chemical synapse. --- Critical period. --- Cyclopamine. --- Degenerative disease. --- Dendrite. --- Down syndrome. --- Ectoderm. --- Embryo. --- Embryology. --- Endocrinology. --- Eric Knudsen. --- Evolution. --- FOXP2. --- Filopodia. --- Forebrain. --- Ganglion cell. --- Gastrulation. --- Gene. --- Growth cone. --- Hans Spemann. --- Hebbian theory. --- Hindbrain. --- Hirschsprung's disease. --- Homeosis. --- Hox gene. --- Human brain. --- Immortalised cell line. --- John Gurdon. --- Lancelot Hogben. --- Lateralization of brain function. --- Marian Diamond. --- Midbrain. --- Model organism. --- Morphogen. --- Motor neuron. --- Muscle. --- Myocyte. --- Nematode. --- Nervous tissue. --- Neural crest. --- Neural development. --- Neural plate. --- Neural stem cell. --- Neural tube defect. --- Neural tube. --- Neuroblast. --- Neuroblastoma. --- Neuroepithelial cell. --- Neuroglia. --- Neuroimaging. --- Neuron doctrine. --- Neuron. --- Organoid. --- Petri dish. --- Progenitor cell. --- Proneural genes. --- Protein. --- Protocadherin. --- Purkinje cell. --- Reeler. --- Reelin. --- Renshaw cell. --- Reticular theory. --- Retinoic acid. --- Roel Nusse. --- Ross Granville Harrison. --- Sarcoma. --- Sonic hedgehog. --- Spina bifida. --- Spinal cord. --- Spindle apparatus. --- Stem cell. --- Sydney Brenner. --- Synapsis. --- Synaptic plasticity. --- Thomas Hunt Morgan. --- Thrombospondin. --- Torsten Wiesel. --- Transformation (genetics). --- Twin. --- Vertebrate. --- Visual word form area. --- White blood cell. --- Zygote. --- Brain --- Growth. --- Neuronal Plasticity --- SCIENCE / Life Sciences / Neuroscience --- SCIENCE / Life Sciences / Developmental Biology --- growth & development --- embryology --- physiology


Book
Strategies to Improve Antineoplastic Activity of Drugs in Cancer Progression
Author:
ISBN: 3036559272 3036559280 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this Special Issue is to collect reports regarding all the recent strategies, directed at the improvement of antineoplastic activity of drugs in cancer progression, engaging all the expertise needed for the development of new anticancer drugs: medicinal chemistry, pharmacology, molecular biology, and computational and drug delivery studies.

Keywords

Research & information: general --- Biology, life sciences --- EGR-1 --- flavonoid --- (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile --- MDA-MB-231 --- MMP9 --- TNFα --- pancreatic ductal adenocarcinoma --- cyclodextrin inclusion complex --- phase solubility studies --- preformulation studies --- biphenylnicotinamide derivatives --- dual inhibitor --- EGFR --- VEGFR2 --- ligand-based pharmacophore --- molecular docking --- molecular dynamics --- leukemias --- doxorubicin --- inflammation --- drug delivery --- tumor targeting --- elastin-like polypeptide --- cell penetrating peptide --- matrix metalloproteinase --- doxorubicin resistance --- photosensitizer delivery system --- PAMAM dendrimer --- photodynamic therapy --- cytotoxicity --- phototoxicity --- colorectal adenocarcinoma --- dicarboximides --- chemical synthesis --- apoptosis --- kinases --- anticancer --- gene profiling --- SAR --- biomarkers --- colorectal cancer --- early detection examination --- liquid biopsy --- personalized medicine --- tumor treatment --- exosomes --- ctDNA --- CTC --- cytotoxic activity --- pyrazole derivatives --- MTT assay --- ADMET analysis --- single-crystal diffraction --- FTIR spectroscopy --- NMR spectroscopy thermogravimetric analysis --- acute myelogenous leukemia --- platelets --- microparticles --- γδ T cells --- immunotherapy --- tumor resistance --- combination therapy --- tumor microenvironment --- immune checkpoint inhibitor --- neuroblastoma --- molecular iodine --- cyclophosphamide --- xenografts --- metronomic therapy --- tamoxifen --- CYP2D6 --- MCF-7 --- Ishikawa cells --- SERM --- TNBC --- uterotrophic --- α-mangostin --- poly(amidoamine) dendrimer --- targeted drug delivery --- biotin targeting --- glioblastoma multiforme --- squamous cell carcinoma --- antiparasitic therapy --- diclofenac --- indomethacin --- oleanolic acid derivative conjugates --- NF-κB --- Nrf2 --- MAPKs --- PSN-1 cells --- reactive oxygen species --- glioblastoma --- brain tumor --- extracellular vesicles --- pancreatic cancer --- paclitaxel --- clathrin --- endocytosis --- sulforaphane --- nicotine --- metalloproteinase-9 --- gastric cancer --- cell invasion --- Arylquin 1 --- colon cancer --- tumor progression --- azelastine --- oxidative stress --- autophagy --- mitotic catastrophe --- chronic myeloid leukemia --- imatinib --- tyrosine kinase --- ketoconazole --- P-glycoprotein --- drug efflux transporter --- non-small-cell lung cancer --- cisplatin resistance --- aldehyde dehydrogenase --- isothiocyanates --- disulfiram --- epithelial to mesenchymal transition --- aminopeptidase N --- acetamidophenones --- Schiff bases --- semicarbazones --- thiosemicarbazones --- inhibition of proliferation


Book
Synthetic Peptides and Peptidomimetics: From Basic Science to Biomedical Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, entitled "Synthetic Peptides and Peptidomimetics: From Basic Science to Biomedical Applications", has included both reviews and original research contributions focused on the chemical design and biomedical applications of structurally modified bioactive peptides. The papers collected show how successful this class of molecules still is, both as model molecules for studying the structure of proteins and as potential therapeutics and diagnostics, and also as laboratory tools for advanced basic and applied studies. The large scientific community working in this field is in fact very active and productive, and is making the most of the potential and versatility of these molecules to generate increasingly interesting and innovative molecules of therapeutic interest and to understand the fundamental molecular mechanisms of life.

Keywords

Research & information: general --- Biology, life sciences --- polymers --- peptidomimetics --- AFM --- transfection --- molecular modelling --- peptide --- α-helix --- hydrocarbon stapling --- ring-closing metathesis --- i,i + 1 staple --- X-ray structure --- deferoxamine --- RGD peptides --- integrins --- radiodiagnostics --- PET imaging --- retro-inverso peptides --- anticancer peptides --- drug delivery --- peptide antigens --- --- IAPP --- antimicrobial peptides --- peptides --- diagnostic --- ELISA --- microarray --- PET --- SPECT --- imaging diagnostic --- non-imaging diagnostic --- amphiphilic peptides --- non-viral gene delivery --- nanocarrier --- peptide self-assemblies --- stimuli responsive --- SARS-CoV-2 --- FRET --- molecular docking --- molecular dynamics --- MM-GBSA --- drug repurposing --- antiviral --- cancer --- cyclic peptide --- integrin --- αvβ3 --- ALOS4 --- melanoma --- fluorescent peptide --- environment-sensitive fluorophore --- peptide labeling --- luciferin --- membrane-binding peptide --- antimicrobial peptide --- antitumor peptide --- RGD peptide --- antiproliferative activity --- chirality --- conformational analysis --- density functional theory (DFT) --- ferrocene --- hydrogen bonds --- peptidomimetic --- X-ray --- protein–protein interactions (PPIs) --- voltage-gated Na+ (Nav) channels --- fibroblast growth factor 14 (FGF14) --- medium spiny neurons (MSNs) --- nucleus accumbens (NAc) --- neurotherapeutics --- cyclophilin A (CypA) --- apoptosis-inducing factor (AIF) --- human neuroblastoma SH-SY5Y cells --- staurosporine-mediated cell death --- AIF(370-394) peptide --- caspase-3 --- PARP --- antifungal --- antibacterial --- peptide-based therapies --- synthetic peptides


Book
Synthetic Peptides and Peptidomimetics: From Basic Science to Biomedical Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, entitled "Synthetic Peptides and Peptidomimetics: From Basic Science to Biomedical Applications", has included both reviews and original research contributions focused on the chemical design and biomedical applications of structurally modified bioactive peptides. The papers collected show how successful this class of molecules still is, both as model molecules for studying the structure of proteins and as potential therapeutics and diagnostics, and also as laboratory tools for advanced basic and applied studies. The large scientific community working in this field is in fact very active and productive, and is making the most of the potential and versatility of these molecules to generate increasingly interesting and innovative molecules of therapeutic interest and to understand the fundamental molecular mechanisms of life.

Keywords

Research & information: general --- Biology, life sciences --- polymers --- peptidomimetics --- AFM --- transfection --- molecular modelling --- peptide --- α-helix --- hydrocarbon stapling --- ring-closing metathesis --- i,i + 1 staple --- X-ray structure --- deferoxamine --- RGD peptides --- integrins --- radiodiagnostics --- PET imaging --- retro-inverso peptides --- anticancer peptides --- drug delivery --- peptide antigens --- --- IAPP --- antimicrobial peptides --- peptides --- diagnostic --- ELISA --- microarray --- PET --- SPECT --- imaging diagnostic --- non-imaging diagnostic --- amphiphilic peptides --- non-viral gene delivery --- nanocarrier --- peptide self-assemblies --- stimuli responsive --- SARS-CoV-2 --- FRET --- molecular docking --- molecular dynamics --- MM-GBSA --- drug repurposing --- antiviral --- cancer --- cyclic peptide --- integrin --- αvβ3 --- ALOS4 --- melanoma --- fluorescent peptide --- environment-sensitive fluorophore --- peptide labeling --- luciferin --- membrane-binding peptide --- antimicrobial peptide --- antitumor peptide --- RGD peptide --- antiproliferative activity --- chirality --- conformational analysis --- density functional theory (DFT) --- ferrocene --- hydrogen bonds --- peptidomimetic --- X-ray --- protein–protein interactions (PPIs) --- voltage-gated Na+ (Nav) channels --- fibroblast growth factor 14 (FGF14) --- medium spiny neurons (MSNs) --- nucleus accumbens (NAc) --- neurotherapeutics --- cyclophilin A (CypA) --- apoptosis-inducing factor (AIF) --- human neuroblastoma SH-SY5Y cells --- staurosporine-mediated cell death --- AIF(370-394) peptide --- caspase-3 --- PARP --- antifungal --- antibacterial --- peptide-based therapies --- synthetic peptides


Book
Synthetic Peptides and Peptidomimetics: From Basic Science to Biomedical Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, entitled "Synthetic Peptides and Peptidomimetics: From Basic Science to Biomedical Applications", has included both reviews and original research contributions focused on the chemical design and biomedical applications of structurally modified bioactive peptides. The papers collected show how successful this class of molecules still is, both as model molecules for studying the structure of proteins and as potential therapeutics and diagnostics, and also as laboratory tools for advanced basic and applied studies. The large scientific community working in this field is in fact very active and productive, and is making the most of the potential and versatility of these molecules to generate increasingly interesting and innovative molecules of therapeutic interest and to understand the fundamental molecular mechanisms of life.

Keywords

polymers --- peptidomimetics --- AFM --- transfection --- molecular modelling --- peptide --- α-helix --- hydrocarbon stapling --- ring-closing metathesis --- i,i + 1 staple --- X-ray structure --- deferoxamine --- RGD peptides --- integrins --- radiodiagnostics --- PET imaging --- retro-inverso peptides --- anticancer peptides --- drug delivery --- peptide antigens --- --- IAPP --- antimicrobial peptides --- peptides --- diagnostic --- ELISA --- microarray --- PET --- SPECT --- imaging diagnostic --- non-imaging diagnostic --- amphiphilic peptides --- non-viral gene delivery --- nanocarrier --- peptide self-assemblies --- stimuli responsive --- SARS-CoV-2 --- FRET --- molecular docking --- molecular dynamics --- MM-GBSA --- drug repurposing --- antiviral --- cancer --- cyclic peptide --- integrin --- αvβ3 --- ALOS4 --- melanoma --- fluorescent peptide --- environment-sensitive fluorophore --- peptide labeling --- luciferin --- membrane-binding peptide --- antimicrobial peptide --- antitumor peptide --- RGD peptide --- antiproliferative activity --- chirality --- conformational analysis --- density functional theory (DFT) --- ferrocene --- hydrogen bonds --- peptidomimetic --- X-ray --- protein–protein interactions (PPIs) --- voltage-gated Na+ (Nav) channels --- fibroblast growth factor 14 (FGF14) --- medium spiny neurons (MSNs) --- nucleus accumbens (NAc) --- neurotherapeutics --- cyclophilin A (CypA) --- apoptosis-inducing factor (AIF) --- human neuroblastoma SH-SY5Y cells --- staurosporine-mediated cell death --- AIF(370-394) peptide --- caspase-3 --- PARP --- antifungal --- antibacterial --- peptide-based therapies --- synthetic peptides

Listing 1 - 9 of 9
Sort by