Narrow your search
Listing 11 - 20 of 155 << page
of 16
>>
Sort by

Book
Textbook of fetal and perinatal pathology
Authors: ---
ISBN: 0865421188 Year: 1991 Publisher: Boston Oxford London Blackwell Scientific Publications

Loading...
Export citation

Choose an application

Bookmark

Abstract


Periodical
Jornal de pediatria.
Author:
ISSN: 00217557 16784782 Year: 1934 Publisher: Rio de Janeiro : Sociedade Brasileira de Pediatria

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Emotions et affects chez le bébé et ses partenaires
Authors: --- ---
ISBN: 2906704482 9782906704480 Year: 1992 Publisher: Paris Eshel

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Obstetrics and the newborn
Authors: ---
ISBN: 0721616747 Year: 1978 Publisher: Eastbourne Saunders

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Neural tube defects : prevalence, pathogenesis and prevention
Author:
ISBN: 1624178936 9781624178931 1624178928 9781624178924 Year: 2013 Publisher: Hauppauge, NY : Nova Science Publishers, Inc.,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Neurology
Authors: --- ---
ISBN: 9780323568739 0323568734 9780323568746 0323568742 9780323543927 0323543928 Year: 2019 Publisher: Philadelphia, PA

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Orthopaedics for the newborn and young child : a practical clinical guide
Authors: ---
ISBN: 3031111362 3031111354 Year: 2023 Publisher: Cham, Switzerland : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Magnetoencephalography : an emerging neuroimaging tool for studying normal and abnormal human brain development
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Research on the human brain development has seen an upturn in the past years mostly due to novel neuroimaging tools that became available to study the anatomy and function of the developing brain. Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) are beginning to be used more frequently in children to determine the gross anatomy and structural connectivity of their brain. Functional MRI and Near-Infrared Spectroscopy (NIRS) determine the hemodynamics and electroencephalography (EEG) the electrophysiological functions of the developing human brain. Magnetoencephalography (MEG) complements EEG as the only other technique capable of directly measuring the developing brain electrophysiology. Although MEG is still being used relatively rarely in pediatric studies, the recent development in this technology is beginning to demonstrate its utility in both basic and clinical neurosciences. MEG seems to be quite attractive for pediatric use, since it measures the human brain activity in an entirely passive manner without possessing any conceivable risk to the developing tissue. MEG sessions generally require minimal patient preparation, and the recordings are extremely well tolerated from children. Biomagnetic techniques also offer an indirect way to assess the functional brain and heart activity of fetuses in humans in utero by measuring the magnetic field outside the maternal abdomen. Magnetic field produced by the electrical activity in the heart and brain of the fetus is not attenuated by the vernix, a waxy film covering its entire skin. A biomagnetic instrument specifically designed for fetal studies has been developed for this purpose. Fetal MEG studies using such a system have shown that both spontaneous brain activity and evoked cortical activity can be measured from outside the abdomen of pregnant mothers. Fetal MEG may become clinically very useful for implementation and evaluation of intervention programs in at-risk populations. Biomagnetic instruments have also been developed for specifically measuring the brain activity in newborns, infants and older children. MEG studies have shown the usefulness of MEG for localizing active regions in the brain and also for tracking the longitudinal maturation of various sensory systems. Studies of pediatric patients are beginning to show interesting functional pathology in autism spectrum disorder, cerebral palsy, epilepsy and other types of neurological and psychiatric disorders (Down syndrome, traumatic brain injury, Tourette syndrome, hearing deficits, childhood migraine). We propose to compile the state of the art MEG studies focused on pediatric population in both health and disease ... We believe a review of the recent studies of human brain development using MEG is quite timely, since we are witnessing advances not only in the instrumentation optimized for the pediatric population, but also in the research based on various types of MEG systems designed for both human fetuses in utero and neonates and older children.


Book
Magnetoencephalography : an emerging neuroimaging tool for studying normal and abnormal human brain development
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Research on the human brain development has seen an upturn in the past years mostly due to novel neuroimaging tools that became available to study the anatomy and function of the developing brain. Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) are beginning to be used more frequently in children to determine the gross anatomy and structural connectivity of their brain. Functional MRI and Near-Infrared Spectroscopy (NIRS) determine the hemodynamics and electroencephalography (EEG) the electrophysiological functions of the developing human brain. Magnetoencephalography (MEG) complements EEG as the only other technique capable of directly measuring the developing brain electrophysiology. Although MEG is still being used relatively rarely in pediatric studies, the recent development in this technology is beginning to demonstrate its utility in both basic and clinical neurosciences. MEG seems to be quite attractive for pediatric use, since it measures the human brain activity in an entirely passive manner without possessing any conceivable risk to the developing tissue. MEG sessions generally require minimal patient preparation, and the recordings are extremely well tolerated from children. Biomagnetic techniques also offer an indirect way to assess the functional brain and heart activity of fetuses in humans in utero by measuring the magnetic field outside the maternal abdomen. Magnetic field produced by the electrical activity in the heart and brain of the fetus is not attenuated by the vernix, a waxy film covering its entire skin. A biomagnetic instrument specifically designed for fetal studies has been developed for this purpose. Fetal MEG studies using such a system have shown that both spontaneous brain activity and evoked cortical activity can be measured from outside the abdomen of pregnant mothers. Fetal MEG may become clinically very useful for implementation and evaluation of intervention programs in at-risk populations. Biomagnetic instruments have also been developed for specifically measuring the brain activity in newborns, infants and older children. MEG studies have shown the usefulness of MEG for localizing active regions in the brain and also for tracking the longitudinal maturation of various sensory systems. Studies of pediatric patients are beginning to show interesting functional pathology in autism spectrum disorder, cerebral palsy, epilepsy and other types of neurological and psychiatric disorders (Down syndrome, traumatic brain injury, Tourette syndrome, hearing deficits, childhood migraine). We propose to compile the state of the art MEG studies focused on pediatric population in both health and disease ... We believe a review of the recent studies of human brain development using MEG is quite timely, since we are witnessing advances not only in the instrumentation optimized for the pediatric population, but also in the research based on various types of MEG systems designed for both human fetuses in utero and neonates and older children.


Book
Magnetoencephalography : an emerging neuroimaging tool for studying normal and abnormal human brain development
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Research on the human brain development has seen an upturn in the past years mostly due to novel neuroimaging tools that became available to study the anatomy and function of the developing brain. Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) are beginning to be used more frequently in children to determine the gross anatomy and structural connectivity of their brain. Functional MRI and Near-Infrared Spectroscopy (NIRS) determine the hemodynamics and electroencephalography (EEG) the electrophysiological functions of the developing human brain. Magnetoencephalography (MEG) complements EEG as the only other technique capable of directly measuring the developing brain electrophysiology. Although MEG is still being used relatively rarely in pediatric studies, the recent development in this technology is beginning to demonstrate its utility in both basic and clinical neurosciences. MEG seems to be quite attractive for pediatric use, since it measures the human brain activity in an entirely passive manner without possessing any conceivable risk to the developing tissue. MEG sessions generally require minimal patient preparation, and the recordings are extremely well tolerated from children. Biomagnetic techniques also offer an indirect way to assess the functional brain and heart activity of fetuses in humans in utero by measuring the magnetic field outside the maternal abdomen. Magnetic field produced by the electrical activity in the heart and brain of the fetus is not attenuated by the vernix, a waxy film covering its entire skin. A biomagnetic instrument specifically designed for fetal studies has been developed for this purpose. Fetal MEG studies using such a system have shown that both spontaneous brain activity and evoked cortical activity can be measured from outside the abdomen of pregnant mothers. Fetal MEG may become clinically very useful for implementation and evaluation of intervention programs in at-risk populations. Biomagnetic instruments have also been developed for specifically measuring the brain activity in newborns, infants and older children. MEG studies have shown the usefulness of MEG for localizing active regions in the brain and also for tracking the longitudinal maturation of various sensory systems. Studies of pediatric patients are beginning to show interesting functional pathology in autism spectrum disorder, cerebral palsy, epilepsy and other types of neurological and psychiatric disorders (Down syndrome, traumatic brain injury, Tourette syndrome, hearing deficits, childhood migraine). We propose to compile the state of the art MEG studies focused on pediatric population in both health and disease ... We believe a review of the recent studies of human brain development using MEG is quite timely, since we are witnessing advances not only in the instrumentation optimized for the pediatric population, but also in the research based on various types of MEG systems designed for both human fetuses in utero and neonates and older children.

Listing 11 - 20 of 155 << page
of 16
>>
Sort by