Narrow your search

Library

KU Leuven (33)

KBR (2)

EhB (1)

UCLL (1)


Resource type

dissertation (31)

book (2)


Language

English (22)

Dutch (10)

Undetermined (1)


Year
From To Submit

2023 (3)

2022 (2)

2021 (4)

2020 (2)

2018 (3)

More...
Listing 1 - 10 of 33 << page
of 4
>>
Sort by

Book
GGO's
Authors: --- ---
ISBN: 9789401418775 9401418772 Year: 2014 Volume: *6 Publisher: Leuven Leuven LannooCampus Metaforum KU Leuven

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wat zijn ggo's? Wat is hun impact op milieu, mens en maatschappij? Waarom is het debat zo gepolariseerd? Ggo's worden steeds belangrijker voor onze voedselproductie en hun bijdrage aan een efficiëntere landbouw wordt volop bestudeerd. Maar ook het maatschappelijk debat omtrent ggo's woedt volop en lokt hevige reacties uit. Dit boek biedt u een alomvattend beeld van de kwestie, toegankelijk gebracht door experts uit verschillende disciplines.


Book
Bouw en functie van planten.
Authors: --- ---
ISBN: 9789033469763 Year: 2008 Publisher: Leuven Acco

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Regulation and function of the Arabidopsis thaliana energy sensor SnRK1
Authors: --- --- ---
Year: 2017 Publisher: Leuven KU Leuven. Faculty of Science

Loading...
Export citation

Choose an application

Bookmark

Abstract

The SnRK1 (SNF1-related kinase1) protein kinase, the ortholog of the yeast SNF1 (Sucrose non-fermenting1) kinase and animal AMP-activated kinase (AMPK), acts as a key metabolic sensor in plants. It integrates both endogenous developmental cues and diverse environmental stress conditions, that affect photosynthesis, respiration, or carbon allocation, triggering a coordinated response to ensure the maintenance of cellular energy homeostasis and survival. This involves metabolic and transcriptional reprogramming, also affecting plant growth. However, how exactly SnRK1 is activated upon increased energy demand or decreasing energy supply and how this affects growth and development is still largely unknow. To address these questions, we first developed and optimised a novel reporter to assess in vivo SnRK1 activity. The reporter is based on a peptide sequence of the well-known AMPK target Acetyl CoA Carboxylase 1 (ACC1) with S79 phosphorylation site, that is fused to an enhanced Green Fluorescent Protein (eGFP) tag (for subcellular localisation) and a double hemagglutinin (HA) tag (for protein expression analysis). The phosphorylation status of the reporter is evaluated using a commercially available phospho-ACC antibody. This construct can be used to study SnRK1 activity in vivo in isolated leaf mesophyll protoplasts or in intact Arabidopsis reporter plants constitutively expressing the reporter. After heterologous expression in bacteria and purification, it can also be used for in vitro kinase assays. Specific and conserved phosphorylation of the reporter was also confirmed in yeast using the S. cerevisiae snf1 mutant. Trehalose-6-phosphate (T6P), an intermediate of plant trehalose biosynthesis and an important novel growth regulator, was suggested to repress SnRK1 activity in young tissues under optimal growth conditions (Zhang et al., 2009). A major objective of this work is to study the molecular mechanisms involved. Using cellular (transient expression) and in vitro assays (using the ACC reporter), we confirmed that T6P regulates SnRK1 especially in younger tissues, and that T6P is not a direct regulator of the heterotrimeric SnRK1 complex, but requires an additional intermediary protein. We then explored the possible conserved regulation of yeast SNF1 by T6P, which would enable the use of powerful yeast genetics to elucidate the underlying molecular mechanisms in more detail. T6P regulation of SNF1 was suggested by the observation that the additional mutation of Snf1 in the tps1 mutant rescued the growth defect of this mutant on rapidly fermentable carbon sources. However, SNF1 T-loop phosphorylation, ACC reporter phosphorylation, and Mig1 (SNF1 target transcription factor) localisation in the WT and tps1 mutant indicated that T6P does not regulate SNF1 activity. Further investigation of gene expression, protein stability and activity of two SNF1 regulated enzymes fructose-1,6-bisphosphatase (encoded by FBP1) and phosphoenolpyruvate carboxykinase (PCK1), revealed a role for T6P in the regulation of gluconeogenesis, downstream and independent of SNF1 activity. The involvement of two SNF1-regulated transcription factors, Cat8 and Sip4, was assessed, but neither transcription factor seems to be involved in mediating the T6P regulation.The role of SnRK1 signalling in growth and development was investigated by gene expression profiling of growing leaves. Previous analyses in Arabidopsis rosette leaf series identified a remarkable peak in the expression of DIN6 (DARK-INDUCIBLE 6), a well-characterized SnRK1 target, suggesting a SnRK1-mediated metabolic and/or developmental transition, coinciding with the growth of the petiole and reduced sugar accumulation. Early leaf development involves a transition from cell division to cell expansion. Using the mesophyll protoplast assay, we found that SnRK1 can repress cyclin (CYCD3;1 and CYCB1;1) promoter activity, providing a direct link with growth control. Interestingly, transient expression of regulatory components in fully differentiated mesophyll leaf cells system can be used as a tool to study cell cycle regulatory machinery. However, the observed peak in DIN6 expression in developing leaves occurs after the transition from cell division to cell expansion. It also does not correspond to the juvenile-adult transition in larger rosettes. The expression of genes involved in sink and source activities indicate that the peak in DIN6 expression (and thus SnRK1 activity) might rather be associated with the transition from sink (net sucrose importing) to source (active photosynthesis and net sucrose exporting) activity, although in cellular assays overexpression of the SnRK1 catalytic subunit KIN10 mainly induced genes involved in sink activities.Finally, given its vital role in plant growth and development, further analyses of SnRK1 function are highly needed and would greatly benefit from specific direct small molecule SnRK1 activators and inhibitors. We therefore optimised the protoplast transient expression system for high throughput compound screening. New luciferase reporter constructs, using the deep sea shrimp nanoluciferase, were made resulting in an increased bioluminescence signal and simplification of the protocol to a one step process and optimal protoplast concentrations were determined.

Keywords


Dissertation
Controle van de SnRK1-activiteit in Arabidopsis thaliana.
Authors: --- --- ---
Year: 2007 Publisher: Leuven K.U.Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Onderzoek naar een hypothetisch glucose-represseerbaar proteïne in de signaaltransductieweg van glucose tot adenylaat cyclase bij de gist Saccharomyces cerevisiae

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
The color purple: Metabolic regulation of anthocyanin biosynthesis in Arabidopsis leaf cells
Authors: --- ---
Year: 2015 Publisher: Leuven : KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Anthocyaninen zijn gekend als de felle rode, roze, paarse en blauwe pigmenten in verschillende delen van planten zoals bloemen, vruchten en bladeren. Deze kleuren zijn belangrijk voor het aantrekken van dieren die zo zaden kunnen verspreiden of planten kunnen bestuiven. Naast deze functie in de reproductie van de plant hebben anthocayninen ook een belangrijke rol in de bescherming tegen stress-factoren zoals droogte, veranderende temperaturen, UV licht, herbivoren en ziekteverwekkers. Anthocyaninen werken bijvoorbeeld als antioxidanten, die de cel beschermen tegen schadelijke componenten (zoals reactieve zuurstofmoleculen) die hierbij gevormd worden. Deze eigenschappen van anthocyaninen maken hun gebruik ook interessant voor de industrie. Zo kunnen ze in de voedingsindustrie synthetische kleurstoffen waarvan de veiligheid in vraag wordt gesteld vervangen. Ook als antioxidanten kunnen ze een positief effect hebben op onze gezondheid. Dit maakt het ook belangrijk om te weten hoe de aanmaak van anthocyaninen in planten precies geregeld wordt. Er werd aangetoond dat verhoogde sucrose-concentraties de aanmaak van anthocyaninen kan stimuleren. Planten produceren suikers in de fotosynthese die vooral in de bladeren van planten plaatsvindt en waarbij koolstofdioxide uit de lucht met behulp van zonlicht wordt omgezet in energierijke suikers. Deze worden meestal onder de vorm van sucrose getransporteerd naar verschillende delen van de plant waar het wordt gebruikt als koolstof- en energiebron. Maar suikers functioneren daarnaast dus ook als signaalmoleculen zodat planten hun groei en ontwikkeling kunnen aanpassen aan hun metabole toestand. Deze regulerende functie van sucrose kan bijvoorbeeld belangrijk zijn bij rijpe vruchten die typisch veel sucrose bevatten. De resulterende anthocyanine-synthese maakt hen aantrekkelijk als voedselbron, wat uiteindelijk belangrijk is voor reproductie en verspreiding. Ook onder invloed van verschillende stress-factoren kan sucrose opstapelen doordat de groei stopt en het niet meer efficient wordt verbruikt. Dan kunnen anthocyaninen een beschermende functie bieden. In deze thesis onderzochten we de moleculaire mechanismen achter de sucrose-geïnduceerde anthocyanine-productie in de bladeren van de plant Arabidopsis thaliana (zandraket). Hiervoor hebben we een onderzoeksmethode ontwikkeld op basis van transgene bladcellen. Het introduceren van DNA in deze cellen maakt een zeer snelle analyse van de gecodeerde eiwitten mogelijk. Zo werd een belangrijke regulerende rol ontdekt voor de MYB75 transcriptiefactor, die door sucrose wordt geïnduceerd en op zijn beurt verschillende andere genen activeert die nodig zijn voor de anthocyanine-biosynthese. We hebben deze belangrijke rol voor MYB75 in dit onderzoek eerst geconfirmeerd. Planten moeten echter ook vaak omgaan met suiker- en energietekort en hierbij speelt het SnRK1 eiwit een belangrijke rol. Het kan energieverbruikende activiteiten (zoals groei) in de plant inhiberen en energievrijgevende processen stimuleren, zodat de energiebalans wordt hersteld. Ons verder onderzoek toont aan hoe SnRK1 ook de expressie en activiteit van MYB75 en zo van de anthocyaninebiosynthese inhibeert. Op deze manier kunnen planten de koolstof en energie die hiervoor nodig is herleiden naar meer vitale processen. Een beter inzicht in deze mechanismen kan op termijn dan ook leiden naar een meer efficiente duurzame productie van deze waardevolle, natuurlijke verbindingen.

Keywords


Dissertation
Plant energy signalling: Control of the SnRK1 phospho-switch in Arabidopsis
Authors: --- ---
Year: 2012 Publisher: Leuven K.U.Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Dissertation
Function and regulation of the SnRK1β subunits of the SnRK1 complex
Authors: --- ---
Year: 2020 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants, like all living organisms, need to deal with stress conditions in an appropriate way to ensure their survival. Since plants cannot move away from stress conditions such as heat or flooding, they require a quick stress response. A main player in this stress response is the cellular energy sensor SnRK1, a conserved protein kinase complex consisting of three subunits: a catalytic α subunit and regulatory β and βγ subunits. When active, the α subunit phosphorylates key enzymes in metabolic pathways and induce or repress the expression of target genes. In general, anabolic pathways are inhibited and catabolic pathways are activated to preserve the energy balance in the cell. It was recently found that the plant α subunit (unlike its animal and yeast counterparts) can act independently, which raises the question about the function of the plant β and βγ subunits. We therefore investigated the effects of the SnRK1β subunits by their transient overexpression in leaf cells of thale cress (Arabidopsis thaliana), which encodes 3 different isoforms: the myristoylated (membrane-associated) β1 and β2 subunits and the plant-specific truncated β3 subunit. We first confirmed previous observations that the β1 and β2 subunits can inhibit the induction of SnRK1 target gene expression by limiting the nuclear translocation of the catalytic α subunit. Consistently, we found that α1 interacts with the β1 and β2 subunits in the cytoplasm, while it also interacts with the β3 subunit in the nucleus. We then focused on the regulation of the β subunits and found that the α subunit induces the expression of the β1 and increases the stability of the β1 and β2 proteins, suggesting a negative feedback mechanism. We also started exploring the post-translational modification of the β2 subunit in more detail using site-directed mutagenesis of putative modified residues. Finally, to examine β subunit function on the whole plant level, we started characterizing T-DNA insertion mutants.

Keywords


Dissertation
SKINs, a novel type of SnRK1-interacting negative regulators in Arabidopsis thaliana

Loading...
Export citation

Choose an application

Bookmark

Abstract

SnRK1 (SNF1-related protein kinase 1) is the plant ortholog of the evolutionarily conserved heterotrimeric AMPK/SNF1/SnRK1 kinases, which act upon energy deficit to maintain cellular energy homeostasis. While overall structure and function is largely conserved, SnRK1 appears to have evolved differently than its ophistokont orthologs. The recent observation of an ap- parent default activation of the catalytic subunit, strongly suggests that SnRK1 signalling is subjected to negative regulation rather than activation, which might provide a more robust and possibly faster response of downstream targets. Here, we investigated a novel plant-specific family in Arabidopsis thaliana that appear to function as AtSnRK1 kinase-interacting negative regulators or AtSKINs. We show that AtSKINs are small, intrinsically disordered proteins that co-localize and physically interact with the catalytic subunit AtSnRK1alpha1. The interaction with AtSnRK1alpha1 enhances AtSKINs′ stability, slowing down their degradation. A cross-species conserved (Lys, Ser) domain (KSD) is essential for AtSKINs to confer repression of the catalytic subunit AtSnRK1 1. We demonstrate that AtSKINs inhibit AtSnRK1alpha1 signalling by excluding it from the nucleus, in addition to other negative regulatory mechanisms. Although AtSKINs act as negative regulators, they promote AtSnRK1alpha1 T-loop phosphorylation, which is required for AtSnRK1alpha1 catalytic activity. The observation that AtSKINs′ transcription is upregulated during AtSnRK1alpha1-activating conditions and their inability to repress endogenous AtSnRK1alpha1 signalling under moderate stress conditions, indicates that AtSKINs might function in a negative feedback mechanism that attenuates AtSnRK1alpha1 activity and signalling to prevent hyperactive stress responses. In addition, our results strongly suggests that AtSKINs are subjected to post-translational modifications. Furthermore, though all AtSKINs repress AtSnRK1alpha1 signalling, they display subtle differences in their regulatory mechanisms, which might result in the ability to fine-tune AtSnRK1alpha1 activity to various levels of energy deficit.

Keywords


Dissertation
Metabolic control of plant color: regulation of anthocyanin biosynthesis by sugar and energy status
Authors: --- ---
Year: 2023 Publisher: Leuven KU Leuven. Faculteit Wetenschappen

Loading...
Export citation

Choose an application

Bookmark

Abstract

Anthocyanins are the blue, purple, pink, and red vacuolar flavonoid pigments present in various plant tissues such as flowers, fruits, and leaves. They play a role in reproduction via pollinator attraction and seed dispersal. Additionally, they have important antioxidant properties enabling tissues to cope with oxidative stress induced with abiotic and biotic stress. Consistently, anthocyanin biosynthesis is also regulated by environmental and developmental cues, such as light, sugar levels, and phytohormones signaling. Importantly, sucrose act as a crucial sugar signal to trigger anthocyanin biosynthesis. However, while some stress conditions are associated with sucrose accumulation, others result in C and energy depletion by effecting, photosynthesis, respiration, or C allocation. Metabolic stress is sensed by the plant energy sensing kinase SnRK1, that ensures survival by redirecting C fluxes to more essential functions. SnRK1 also repressed the costly anthocyanin biosynthesis (and possibly more generally secondary metabolism). The sucrose-specific induction and SnRK1 inhibition of anthocyanin biosynthesis in Arabidopsis thaliana seedlings occurs via the key TF MYB75 and its target LBG (Late Biosynthesis Gene) encoded enzymes, at the transcriptional and posttranslational level. Here, we further explored the molecular mechanisms and possible direct SnRK1 targets in anthocyanin production regulation by metabolic status in A. thaliana. First, we investigated the mechanisms involved in sucrose-induced MYB75 expression. Stabilisation of the DELLAs proteins (proteasome-degraded negative regulators of GA signaling) is a key factor in sucrose-induced MYB75 expression. We confirm this by showing that GA application no longer effectively represses sucrose-induced anthocyanin biosynthesis in pap-1D mutant (MYB75 OX) seedlings. Further, we investigated the transcriptional regulation of MYB75 using transient expression assays, confirming that MYB75 expression is upregulated by the BBX22 TF and that this activation is suppressed by SnRK1 (KIN10) in leaf cells. Mutation of putative SnRK1 phosphorylation sites in BBX22 did not provide a direct molecular link, and mutant analysis revealed that other factors function redundantly to BBX20, BBX21, BBX22, and HY5. Secondly, we examined the post-translational regulation of MYB75 by SnRK1. MYB75 operates in heterotrimeric MBW complex, that can activate anthocyanin biosynthesis-related DFR expression but is repressed by SnRK1 in cellular assays. Importantly, several putative SnRK1 phosphorylation sites were found in MYB75 and further research with single and double mutants are needed to further analyze if SnRK1 can still phosphorylate these to control MYB75 activity. Finally, we produced transgenic KIN10 OX x pap1-D (MYB75 OX) plants to provide genetic evidence for this posttranslational regulation. While 25 % of the F2 plants lost their constitutively high anthocyanin biosynthesis, surprisingly, no correlation could be found with KIN10 expression, suggesting the induction of suppressor mutations by the genetic transformation. Further research will solve these molecular plant mysteries.

Keywords

Listing 1 - 10 of 33 << page
of 4
>>
Sort by