Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2021 (3)

Listing 1 - 6 of 6
Sort by

Book
Modelling and Control of Mechatronic and Robotic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Keywords

Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method


Book
Modelling and Control of Mechatronic and Robotic Systems, Volume II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In modern times, mechatronic and robotic systems are developing at a faster pace than in the past, and research on novel solutions and applications of such devices are studied in both industrial and academic environments. The second volume of this Special Issue of Applied Sciences aims to disseminate the latest research achievements, ideas, and applications of the modeling and control of mechatronic and robotic systems, with particular emphasis on novel trends and challenges. We invited contributions to this Special Issue on topics including (but not limited to): modeling and control, path and trajectory planning, optimization problems, collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and manufacturing applications.

Keywords

Technology: general issues --- History of engineering & technology --- wobble motor --- permeance --- magnetic circuit --- leakage flux --- electropermanent magnet --- force model --- inverse kinematics --- genetic algorithm --- workspace analysis --- multi-fingered anthropomorphic hand --- amphibious robot --- spherical robot --- assistant fin --- buoyancy --- hydrodynamic force --- robot --- crawler --- traction --- kinematics --- EOD Robot --- terrorist attacks --- hybrid control --- state machine --- Festo --- PLC --- friction force --- trout --- fish processing machine --- simulation --- vision based system --- humanoid robots --- robot design --- legged robots --- dynamic model --- harsh environment --- kinematic model --- mecanum wheel --- omnidirectional robot --- robotic platform --- surveillance --- flow-rate estimation --- automatic pouring machine --- extended Kalman filter --- mechatronics --- hysteresis --- advance trajectory control --- piezoelectric --- actuator --- neural networks --- robust control --- MPC --- foot location --- motion planning --- gait transitioning --- deep deterministic policy gradients --- snake manipulator --- data-driven --- accuracy --- 6DoF motion platform --- monitoring system --- crank arm mechanisms --- cable-driven parallel robots --- overconstrained robots --- design --- non-contact operations --- behavior-based --- climber robot --- control --- control architecture --- fault-tolerant --- legged robot --- optimization --- 3D printer --- Cartesian kinematics --- vibration analysis --- additive manufacturing --- mechanical design --- closed-kinematic chain manipulator (CKCM) --- sliding mode control (SMC) --- time-delay estimation (TDE) --- nonsingular fast terminal sliding mode control (NFTSMC) --- synchronization control --- model-free control --- n/a


Book
Modelling and Control of Mechatronic and Robotic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Keywords

Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method


Book
Modelling and Control of Mechatronic and Robotic Systems, Volume II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In modern times, mechatronic and robotic systems are developing at a faster pace than in the past, and research on novel solutions and applications of such devices are studied in both industrial and academic environments. The second volume of this Special Issue of Applied Sciences aims to disseminate the latest research achievements, ideas, and applications of the modeling and control of mechatronic and robotic systems, with particular emphasis on novel trends and challenges. We invited contributions to this Special Issue on topics including (but not limited to): modeling and control, path and trajectory planning, optimization problems, collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and manufacturing applications.

Keywords

Technology: general issues --- History of engineering & technology --- wobble motor --- permeance --- magnetic circuit --- leakage flux --- electropermanent magnet --- force model --- inverse kinematics --- genetic algorithm --- workspace analysis --- multi-fingered anthropomorphic hand --- amphibious robot --- spherical robot --- assistant fin --- buoyancy --- hydrodynamic force --- robot --- crawler --- traction --- kinematics --- EOD Robot --- terrorist attacks --- hybrid control --- state machine --- Festo --- PLC --- friction force --- trout --- fish processing machine --- simulation --- vision based system --- humanoid robots --- robot design --- legged robots --- dynamic model --- harsh environment --- kinematic model --- mecanum wheel --- omnidirectional robot --- robotic platform --- surveillance --- flow-rate estimation --- automatic pouring machine --- extended Kalman filter --- mechatronics --- hysteresis --- advance trajectory control --- piezoelectric --- actuator --- neural networks --- robust control --- MPC --- foot location --- motion planning --- gait transitioning --- deep deterministic policy gradients --- snake manipulator --- data-driven --- accuracy --- 6DoF motion platform --- monitoring system --- crank arm mechanisms --- cable-driven parallel robots --- overconstrained robots --- design --- non-contact operations --- behavior-based --- climber robot --- control --- control architecture --- fault-tolerant --- legged robot --- optimization --- 3D printer --- Cartesian kinematics --- vibration analysis --- additive manufacturing --- mechanical design --- closed-kinematic chain manipulator (CKCM) --- sliding mode control (SMC) --- time-delay estimation (TDE) --- nonsingular fast terminal sliding mode control (NFTSMC) --- synchronization control --- model-free control --- n/a


Book
Modelling and Control of Mechatronic and Robotic Systems, Volume II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In modern times, mechatronic and robotic systems are developing at a faster pace than in the past, and research on novel solutions and applications of such devices are studied in both industrial and academic environments. The second volume of this Special Issue of Applied Sciences aims to disseminate the latest research achievements, ideas, and applications of the modeling and control of mechatronic and robotic systems, with particular emphasis on novel trends and challenges. We invited contributions to this Special Issue on topics including (but not limited to): modeling and control, path and trajectory planning, optimization problems, collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and manufacturing applications.

Keywords

wobble motor --- permeance --- magnetic circuit --- leakage flux --- electropermanent magnet --- force model --- inverse kinematics --- genetic algorithm --- workspace analysis --- multi-fingered anthropomorphic hand --- amphibious robot --- spherical robot --- assistant fin --- buoyancy --- hydrodynamic force --- robot --- crawler --- traction --- kinematics --- EOD Robot --- terrorist attacks --- hybrid control --- state machine --- Festo --- PLC --- friction force --- trout --- fish processing machine --- simulation --- vision based system --- humanoid robots --- robot design --- legged robots --- dynamic model --- harsh environment --- kinematic model --- mecanum wheel --- omnidirectional robot --- robotic platform --- surveillance --- flow-rate estimation --- automatic pouring machine --- extended Kalman filter --- mechatronics --- hysteresis --- advance trajectory control --- piezoelectric --- actuator --- neural networks --- robust control --- MPC --- foot location --- motion planning --- gait transitioning --- deep deterministic policy gradients --- snake manipulator --- data-driven --- accuracy --- 6DoF motion platform --- monitoring system --- crank arm mechanisms --- cable-driven parallel robots --- overconstrained robots --- design --- non-contact operations --- behavior-based --- climber robot --- control --- control architecture --- fault-tolerant --- legged robot --- optimization --- 3D printer --- Cartesian kinematics --- vibration analysis --- additive manufacturing --- mechanical design --- closed-kinematic chain manipulator (CKCM) --- sliding mode control (SMC) --- time-delay estimation (TDE) --- nonsingular fast terminal sliding mode control (NFTSMC) --- synchronization control --- model-free control --- n/a


Book
Modelling and Control of Mechatronic and Robotic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Keywords

bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method

Listing 1 - 6 of 6
Sort by