Narrow your search

Library

ULB (7)

ULiège (7)

KU Leuven (6)

AP (5)

KDG (5)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

More...

Resource type

book (10)

digital (5)


Language

English (15)


Year
From To Submit

2022 (3)

2016 (2)

2015 (2)

2009 (4)

2005 (2)

More...
Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Digital
Tutorials in Mathematical Biosciences II : Mathematical Modeling of Calcium Dynamics and Signal Transduction
Author:
ISBN: 9783540314387 Year: 2005 Publisher: Berlin Heidelberg Springer-Verlag GmbH

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Mathematical Physiology : I: Cellular Physiology
Authors: ---
ISBN: 0387793879 0387758461 1489986707 9786613562067 038775847X 128038414X 0387793887 Year: 2009 Publisher: New York, NY : Springer New York : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. This first volume deals with the fundamental principles of cell physiology and the second with the physiology of systems. The book includes detailed illustrations and numerous excercises with selected solutions. The emphasis throughout is on the applications; because of this interdisciplinary approach, this book will be of interest to students and researchers, not only in mathematics, but also in bioengineering, physics, chemistry, biology, statistics and medicine. James Keener is a Distinguished Professor of Mathematics at the University of Utah. He and his wife live in Salt Lake City, but don't be surprised if he moves to the mountains. James Sneyd is the Professor of Applied Mathematics at the University of Auckland in New Zealand, where he has worked for the past six years. He lives with his wife and three children beside a beach, and would rather be swimming. Reviews of the first edition: ...probably the best book ever written on the interdisciplinary field of mathematical physiology. Mathematical Reviews, 2000 In addition to being good reading, excellent pedagogy, and appealing science, the exposition is lucid and clear, and there are many good problem sets to choose from... Highly recommended. Mathematical Biosciences, 1999 Both authors are seasoned experts in the field of mathematical physiology and particularly in the field of excitability, calcium dynamics and spiral waves. It directs students to become not merely skilled technicians in biological research but masters of the science. SIAM, 2004 The first edition was the winner of the 1998 Association of American Publishers "Best New Title in Mathematics.".

Mathematical physiology
Authors: ---
ISBN: 0387983813 9780387983813 9780387227061 9786610010240 128001024X 0387227067 Year: 1998 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematical Physiology provides an introduction into physiology using the tools and perspectives of mathematical modeling and analysis. It describes ways in which mathematical theory may be used to give insights into physiological questions and how physiological questions can in turn lead to new mathematical problems. The book is divided into two parts, the first dealing with the fundamental principles of cell physiology, and the second with the physiology of systems. In the first part, after an introduction to basic biochemistry and enzyme reactions, the authors discuss volume control, the membrane potential, ionic flow through channels, excitability, calcium dynamics, and electrical bursting. This first part concludes with spatial aspects such as a synaptic transmission, gap junctions, the linear cable equation, nonlinear wave propagation in neurons, and calcium waves. In the second part, the human body is studied piece by piece, beginning with an introduction to electrocardiology, followed by the physiology of the circulatory system, blood, muscle, hormones, and kidneys. Finally, the authors examine the digestive system and the visual system, ending with the inner ear. This book will be of interest to researchers, to graduate students and advanced undergraduate students in applied mathematics who wish to learn how to build and analyze mathematical models and to become familiar with new areas of application, as well as to physiologists interested in learning about theoretical approaches to their work. The inclusion of numerous exercises and models could be used to add further interest and challenge to traditional courses taught by applied mathematicians, bioengineers, and physiologists.


Book
Mathematical physiology
Authors: ---
ISBN: 9780387758473 9780387758466 9780387094199 9780387793870 9780387793887 Year: 2009 Publisher: New York, NY : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. This second volume deals with the physiology of systems and the first volume with the fundamental principles of cell physiology. The book includes detailed illustrations and numerous excercises with selected solutions. The emphasis throughout is on the applications; because of this interdisciplinary approach, this book will be of interest to students and researchers, not only in mathematics, but also in bioengineering, physics, chemistry, biology, statistics and medicine. James Keener is a Distinguished Professor of Mathematics at the University of Utah. He and his wife live in Salt Lake City, but don't be surprised if he moves to the mountains. James Sneyd is the Professor of Applied Mathematics at the University of Auckland in New Zealand, where he has worked for the past six years. He lives with his wife and three children beside a beach, and would rather be swimming. Reviews of the first edition: ...probably the best book ever written on the interdisciplinary field of mathematical physiology. Mathematical Reviews, 2000 In addition to being good reading, excellent pedagogy, and appealing science, the exposition is lucid and clear, and there are many good problem sets to choose from... Highly recommended. Mathematical Biosciences, 1999 Both authors are seasoned experts in the field of mathematical physiology and particularly in the field of excitability, calcium dynamics and spiral waves. It directs students to become not merely skilled technicians in biological research but masters of the science. SIAM, 2004 The first edition was the winner of the 1998 Association of American Publishers "Best New Title in Mathematics."


Book
Tutorials in Mathematical Biosciences II : Mathematical Modeling of Calcium Dynamics and Signal Transduction
Authors: ---
ISBN: 9783540314387 Year: 2005 Publisher: Berlin Heidelberg Springer Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a series of models in the general area of cell physiology and signal transduction, with particular attention being paid to intracellular calcium dynamics, and the role played by calcium in a variety of cell types. Calcium plays a crucial role in cell physiology, and the study of its dynamics lends insight into many different cellular processes. In particular, calcium plays a central role in muscular contraction, olfactory transduction and synaptic communication, three of the topics to be addressed in detail in this book. In addition to the models, this book also presents much of the underlying physiology, so that readers may learn both the mathematics and the physiology at the same time, and see how the models are applied to specific biological questions. It is thus neither a mathematics book nor a physiology book, but has features from both sides of the fence. It is intended primarily as a graduate text or a research reference. However, some parts of the book, particularly the introductory chapters on calcium dynamics will be well within the reach of some undergraduates. It will serve as a concise and up-to-date introduction to all those who wish to learn about the state of calcium dynamics modeling, and how such models are applied to physiological questions.


Book
Mathematical physiology
Authors: ---
ISBN: 9781489986702 9781493937097 Year: 2009 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Mathematics and statistics for science
Authors: --- ---
ISBN: 3031053176 3031053184 Year: 2022 Publisher: Cham, Switzerland : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Mathematics and Statistics for Science
Authors: --- ---
ISBN: 9783031053184 9783031053177 9783031053191 Year: 2022 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mathematics and statistics are the bedrock of modern science. No matter which branch of science you plan to work in, you simply cannot avoid quantitative approaches. And while you won't always need to know a great deal of theory, you will need to know how to apply mathematical and statistical methods in realistic scenarios. That is precisely what this book teaches. It covers the mathematical and statistical topics that are ubiquitous in early undergraduate courses, but does so in a way that is directly linked to science. Beginning with the use of units and functions, this book covers key topics such as complex numbers, vectors and matrices, differentiation (both single and multivariable), integration, elementary differential equations, probability, random variables, inference and linear regression. Each topic is illustrated with widely-used scientific equations (such as the ideal gas law or the Nernst equation) and real scientific data, often taken directly from recent scientific papers. The emphasis throughout is on practical solutions, including the use of computational tools (such as Wolfram Alpha or R), not theoretical development. There is a large number of exercises, divided into mathematical drills and scientific applications, and full solutions to all the exercises are available to instructors. Mathematics and Statistics for Science covers the core methods in mathematics and statistics necessary for a university degree in science, highlighting practical solutions and scientific applications. Its pragmatic approach is ideal for students who need to apply mathematics and statistics in a real scientific setting, whether in the physical sciences, life sciences or medicine.


Book
Models of Calcium Signalling
Authors: --- --- ---
ISBN: 3319296450 3319296477 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Department of Mathematics at the University of Auckland, New Zealand; James Sneyd is a Professor in the Department of Mathematics at The University of Auckland, New Zealand. .

Listing 1 - 10 of 15 << page
of 2
>>
Sort by