Narrow your search
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Dissertation
Quality assessment of highly productive selective laser melting processes
Authors: --- --- --- ---
Year: 2019 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The thesis aims at determining suitable selective laser melting process parameters enabling high productivity and sufficient part quality, for two materials: the aluminium alloy AlSi10Mg and the stainless steel SS316L.&#13;To do that, the concept of productivity is first defined. On that basis, a strategy to optimize it is determined. It consists of finding adequate exposure parameters (power, scanning speed, hatch spacing, contour powers and contour scanning speeds) leading to a high relative density and low surface roughness, when the layer thickness is set to 0.1 mm (AlSi10Mg) and 0.08 mm (SS316L).&#13;Experiments consisting of printing small cubes with different sets of parameters are conducted. Selecting test series parameters is reasoned using an index, which provides an estimation of the lack of fusion porosity that should be expected given a combination of power, scanning speed, hatch spacing and layer thickness.&#13;Relative density is measured through Archimede’s method and micrography. AlSi10Mg and SS316L samples associated to a high index show lack-of-fusion pores. Besides, AlSi10Mg samples manufactured with low scanning speeds are subjected to spherical porosity, due to hydrogen bubbles that had time to grow in the melt pool before being trapped by solidification, most likely. SS316L samples present keyhole pores at high-energy-density regimes and porosity due to Plateau-Rayleigh instability at high-power-and-scanning-speed regimes.&#13;Regarding surface quality, AlSi10Mg samples show a lower roughness when linear energy density is increased using two pre-contours, whereas SS316L samples present a better surface quality with one post-contour. Best surface roughness obtained after sandblasting is 6 μm for AlSi10Mg and 7 μm for SS316L.&#13;Based on the conclusions of the experiments, a model is built to delimit windows of parameters leading to a sufficiently high density. Optimal sets regarding productivity are selected inside the windows. Predicted build rates are 16.5 mm3/s and 9.6 mm3/s for AlSi10Mg and SS316L, respectively. They increase current volume build rates by 58% and 159%, respectively.


Book
Selective Laser Melting: Materials and Applications
Author:
ISBN: 3039285793 3039285785 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers, and scientists. AM has the ability to fabricate materials to produce parts with complex shapes without any theoretical restrictions combined with added functionalities. Selective laser melting (SLM), also known as laser-based powder bed processing (LPBF), is one of the main AM process that can be used to fabricate wide variety of materials that are Al-, Ti-, Fe-, Ni-, Co-, W-, Ag-, and Au-based, etc. However, several challenges need to be addressed systematically, such as development of new materials that suit the SLM process conditions so the process capabilities can be fully used to produce new properties in these materials. Other issues in the field are the lack of microstructure–property correlations, premature failure, etc. Accordingly, this Special Issue (book) focuses mainly on the microstructure-correlation in three different alloys: AlSi10Mg, Ti6Al4V, and 304L stainless steel, where six articles are presented. Hence, this Special Issue outlines microstructure–property correlations in the SLM processed materials and provides a value addition to the field of AM.


Book
Anniversary Feature Papers
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.


Book
Anniversary Feature Papers
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.


Book
Anniversary Feature Papers
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.


Book
Light Weight Alloys: Processing, Properties and Their Applications
Authors: ---
ISBN: 3039289209 3039289195 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is growing interest in light metallic alloys for a wide number of applications owing to their processing efficiency, processability, long service life, and environmental sustainability. Aluminum, magnesium, and titanium alloys are addressed in this Special Issue, however, the predominant role played by aluminum. The collection of papers published here covers a wide range of topics that generally characterize the performance of the alloys after manufacturing by conventional and innovative processing routes.

Keywords

fatigue properties --- hydroforming --- AlSi12Cu1(Fe) --- magnesium alloy --- microstructure --- Ti6Al4V titanium alloy --- FEM simulation --- aging treatment --- AlSi11Cu2(Fe) --- titanium aluminides --- commercially pure titanium --- hot working --- quenching process --- hot rolling --- 7003 alloy --- compressive strength --- plastic strain --- precipitation --- constitutive equations --- processing temperature --- material property --- hot forging --- wear resistance --- hot deformation behavior --- solid solution hardening --- microstructural changes --- fatigue behavior --- hardening criteria --- AlSi10Mg alloy --- 7XXX Al alloy --- hot compression --- creep --- Al-5Mg wire electrode --- ultra-fine grain --- mechanical properties --- cooling rate --- residual stress --- thermomechanical treatment --- remanufacturing --- hot workability --- activation energy --- mechanical alloying --- selective laser melting --- alloy --- Al alloy --- dynamic recrystallization --- springback --- wire feedability --- cold rolling --- spray deposited --- rotary-die equal-channel angular pressing --- adhesion strength --- microarc oxidation --- aluminum alloy --- Zr --- processing map --- Al–Si alloy --- UNS A92024-T3 --- Al-Si-Cu alloys --- sludge --- high pressure die casting --- fractography --- 2024-T4 aluminum alloys --- anode pulse-width --- consolidation --- high temperature --- AlSi9Cu3(Fe) --- FEP --- resistance spot welding --- intermetallics --- tensile properties --- tensile property --- iron


Book
Additive Manufacturing of Metals
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an exciting collection of research articles that offer a unique view into the fast developing field of metal additive manufacturing, providing insights into this advanced manufacturing technology. The articles span recent advances in metal AM technologies, and their application to a wide range of metals, exploring how the processing parameters offer unique material properties. This book encapsulates the state of the art in this rapidly evolving field of technology and will be a valuable resource for researchers in the field, from Ph.D. students to professors, and through to industrial end users.


Book
Additive Manufacturing of Metals
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an exciting collection of research articles that offer a unique view into the fast developing field of metal additive manufacturing, providing insights into this advanced manufacturing technology. The articles span recent advances in metal AM technologies, and their application to a wide range of metals, exploring how the processing parameters offer unique material properties. This book encapsulates the state of the art in this rapidly evolving field of technology and will be a valuable resource for researchers in the field, from Ph.D. students to professors, and through to industrial end users.


Book
Additive Manufacturing of Metals
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an exciting collection of research articles that offer a unique view into the fast developing field of metal additive manufacturing, providing insights into this advanced manufacturing technology. The articles span recent advances in metal AM technologies, and their application to a wide range of metals, exploring how the processing parameters offer unique material properties. This book encapsulates the state of the art in this rapidly evolving field of technology and will be a valuable resource for researchers in the field, from Ph.D. students to professors, and through to industrial end users.


Book
Additive Manufacturing: Alloy Design and Process Innovations.
Authors: ---
ISBN: 3039284150 3039284142 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

microstructure --- slag --- crystallographic texture --- epoxy solder --- additive manufacturing --- substrate preheating --- thermosetting epoxy resin --- AlSi10Mg alloy --- impact --- residual stress --- stability lobe diagram --- laves phase --- vanadium --- selective laser melting (SLM) --- molten pool dynamic behavior --- scanning strategy --- pulse frequency --- thin-walled weak rigidity parts --- scanning --- aluminum --- elastic abrasive --- 2219 aluminum alloy --- Powder bed --- ABS --- laser energy density --- equivalent processing model --- composition --- numerical analysis --- scanning electron microscopy (SEM) --- Hastelloy X alloy --- regular mixing --- texture evolution --- graphene nano-sheets (GNSs) --- Electron Beam Melting --- powder bed fusion --- microstructural evolution --- Mg content --- cement --- bulk metallic glasses --- grain refinement --- Taguchi --- intermediate thermo-mechanical treatment --- valorization --- microstructure and properties --- arc current --- high computational efficiency --- powder properties --- dynamic characteristics --- composite materials --- CuAl2 phase --- rapid solidification --- magnetizer --- M300 mold steel --- circular economy --- titanium alloy --- Al–5Si alloy --- Al–Mg–Si alloy --- ultrasonic bonding --- water absorption --- disc brake --- support strategy --- inoculation --- arc additive manufacture --- 3D metal printing --- ultrafast laser --- Hot Isostatic Pressure --- arc additive manufacturing --- continuous carbon fiber --- performance characteristics --- process-damping --- intermetallic compound (IMC) --- interfaces --- direct metal laser sintering --- porosity --- nickel-based superalloy --- element segregation --- hydrophobicity --- H13 tool steel --- Cu50Zr43Al7 --- metal powders --- parameter optimization --- side spatters --- powder packing --- 3D printing --- precipitates --- n/a --- simulation --- laser cladding deposition --- melt pool size --- quenching rate --- Al–Mg alloy --- tailored properties --- workpiece scale --- fatigue --- laser cladding --- Ti-6Al-4V --- deformation --- quality of the as-built parts --- model --- milling --- wire feeding additive manufacturing --- martensitic transformation --- ball milling --- Inconel 718 --- ablation --- in-process temperature in MPBAM --- subgranular dendrites --- porosity reduction --- femtosecond --- paint bake-hardening --- Al6061 --- defects --- continuous dynamic recrystallization --- wear --- Additive manufacturing --- volumetric heat source --- Ti6Al4V alloy --- AlSi10Mg --- radial grooves --- GH4169 --- temperature and stress fields --- laser powder bed fusion --- metallic glasses --- numerical simulation --- latent heat --- divisional scanning --- wire lateral feeding --- laser powder bed fusion (LPBF) --- heat treatment --- thermal behaviour --- fused filament fabrication --- microstructures --- thermal conductivity --- 12CrNi2 alloy steel powder --- tensile strength --- hot stamping steel blanks --- multi-laser manufacturing --- aluminum alloys --- additive surface structuring --- parts design --- process parameters --- thermal stress analysis --- SLM process parameters --- nickel alloys --- Al–Si --- powder flowability --- laser power absorption --- refractory high-entropy alloy --- localized inductive heating --- mechanical properties --- selective laser melting --- storage energy --- concrete --- mechanical property --- gray cast iron --- constitutive model --- analytical modeling --- hot deformation --- epitaxial growth --- design --- flowability --- amorphous alloy --- PSO-BP neural network algorithm --- molten pool evolution --- microhardness measurement --- macro defects --- thermal capillary effects --- finite element analysis --- dynamic properties --- WxNbMoTa --- properties --- Al-5Si alloy --- Al-Mg-Si alloy --- Al-Mg alloy --- Al-Si

Listing 1 - 10 of 11 << page
of 2
>>
Sort by