Narrow your search
Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Book
Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites
Author:
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Activity of the multi-functional networked neurons depends on their intrinsic states and bears both cell- and network-defined features. Firing patterns of a neuron are conventionally attributed to spatial-temporal organization of inputs received from the network-mates via synapses, in vast majority dendritic. This attribution reflects widespread views of the within-cell job sharing, such that the main function of the dendrites is to receive signals and deliver them to the axo-somatic trigger zone, which actually generates the output pattern. However, these views are now revisited due to finding of active, non-linear properties of the dendritic membrane practically in neurons of practically all explored types. Like soma and axon, the dendrites with active membrane are able to generate self-maintained, propagating depolarizations and thus share intrinsic pattern-forming role with the trigger zone. Unlike the trigger zone, the dendrites have complex geometry, which is subject to developmental, activity-dependent, or neurodegenerative changes. Structural features of the arborization inevitably impact on electrical states and cooperative behavior of its constituting parts at different levels of organization, from sub-trees and branches to voltage- and ligand-gated ion channels populating the dendritic membrane. More than two decades of experimental and computer simulation studies have brought numerous phenomenological demonstrations of influence of the dendritic structure on neuronal firing patterns. A necessary step forward is to comprehend these findings and build a firm theoretical basis, including quantitative relationships between geometrical and electrical characteristics determining intrinsic activity of neurons. The articles in this eBook represent progress achieved in a broad circle of laboratories studied various aspects of structure and function of the neuronal dendrites. The authors elucidate new details of dendritic mechanisms underlying intrinsic activity patterns in neurons and highlight important questions that remain open in this important domain of cellular and computational neuroscience.


Book
Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites
Author:
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Activity of the multi-functional networked neurons depends on their intrinsic states and bears both cell- and network-defined features. Firing patterns of a neuron are conventionally attributed to spatial-temporal organization of inputs received from the network-mates via synapses, in vast majority dendritic. This attribution reflects widespread views of the within-cell job sharing, such that the main function of the dendrites is to receive signals and deliver them to the axo-somatic trigger zone, which actually generates the output pattern. However, these views are now revisited due to finding of active, non-linear properties of the dendritic membrane practically in neurons of practically all explored types. Like soma and axon, the dendrites with active membrane are able to generate self-maintained, propagating depolarizations and thus share intrinsic pattern-forming role with the trigger zone. Unlike the trigger zone, the dendrites have complex geometry, which is subject to developmental, activity-dependent, or neurodegenerative changes. Structural features of the arborization inevitably impact on electrical states and cooperative behavior of its constituting parts at different levels of organization, from sub-trees and branches to voltage- and ligand-gated ion channels populating the dendritic membrane. More than two decades of experimental and computer simulation studies have brought numerous phenomenological demonstrations of influence of the dendritic structure on neuronal firing patterns. A necessary step forward is to comprehend these findings and build a firm theoretical basis, including quantitative relationships between geometrical and electrical characteristics determining intrinsic activity of neurons. The articles in this eBook represent progress achieved in a broad circle of laboratories studied various aspects of structure and function of the neuronal dendrites. The authors elucidate new details of dendritic mechanisms underlying intrinsic activity patterns in neurons and highlight important questions that remain open in this important domain of cellular and computational neuroscience.


Book
Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites
Author:
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Activity of the multi-functional networked neurons depends on their intrinsic states and bears both cell- and network-defined features. Firing patterns of a neuron are conventionally attributed to spatial-temporal organization of inputs received from the network-mates via synapses, in vast majority dendritic. This attribution reflects widespread views of the within-cell job sharing, such that the main function of the dendrites is to receive signals and deliver them to the axo-somatic trigger zone, which actually generates the output pattern. However, these views are now revisited due to finding of active, non-linear properties of the dendritic membrane practically in neurons of practically all explored types. Like soma and axon, the dendrites with active membrane are able to generate self-maintained, propagating depolarizations and thus share intrinsic pattern-forming role with the trigger zone. Unlike the trigger zone, the dendrites have complex geometry, which is subject to developmental, activity-dependent, or neurodegenerative changes. Structural features of the arborization inevitably impact on electrical states and cooperative behavior of its constituting parts at different levels of organization, from sub-trees and branches to voltage- and ligand-gated ion channels populating the dendritic membrane. More than two decades of experimental and computer simulation studies have brought numerous phenomenological demonstrations of influence of the dendritic structure on neuronal firing patterns. A necessary step forward is to comprehend these findings and build a firm theoretical basis, including quantitative relationships between geometrical and electrical characteristics determining intrinsic activity of neurons. The articles in this eBook represent progress achieved in a broad circle of laboratories studied various aspects of structure and function of the neuronal dendrites. The authors elucidate new details of dendritic mechanisms underlying intrinsic activity patterns in neurons and highlight important questions that remain open in this important domain of cellular and computational neuroscience.


Periodical
Central nervous system trauma
Author:
ISSN: 07375999 Publisher: New York, N.Y.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Central nervous system --- Central Nervous System --- Nerve Regeneration. --- Neuronal Plasticity. --- Neurosurgery --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Brain Plasticity --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Brain Plasticities --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Brain --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Brain --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Nerve Tissue Regeneration --- Nervous Tissue Regeneration --- Neural Tissue Regeneration --- Nerve Tissue Regenerations --- Nervous Tissue Regenerations --- Neural Tissue Regenerations --- Regeneration, Nerve --- Regeneration, Nerve Tissue --- Regeneration, Nervous Tissue --- Regeneration, Neural Tissue --- Tissue Regeneration, Nerve --- Tissue Regeneration, Nervous --- Tissue Regeneration, Neural --- Nerve Transfer --- Nervous system, Central --- Nervous system --- Wounds and injuries --- injuries. --- rehabilitation. --- Wounds and injuries. --- Health Sciences --- Clinical Medicine


Periodical
Neural plasticity.
Author:
ISSN: 16875443 20905904 Year: 1998 Publisher: Patrington, East Yorkshire, U.K. : New York, NY : Freund & Pettman, Hindawi Pub. Corp.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Neuronal Plasticity. --- Neuroplasticity --- Plasticité neuronale --- Periodicals. --- Périodiques --- Plasticité neuronale. --- Neuroplasticity. --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Neuronal Plasticity --- neural plasticity --- neuroplasticity --- Neurology --- Periodicals --- Cell Plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology --- Neurology. --- Health Sciences --- Physiology --- Psychiatry --- Neuropathology --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain --- Neuroplasticitat. --- Revistes electròniques. --- Revistes digitals --- Revistes en línia --- Revistes on line --- Revistes per Internet --- Publicacions electròniques --- Revistes --- Adaptació neural --- Adaptació neuronal --- Plasticitat neural --- Plasticitat neuronal --- Plasticitat sinàptica --- Adaptació (Fisiologia) --- Neurofisiologia --- Neurobiologia del desenvolupament


Book
The Bobath concept in adult neurology
Authors: ---
ISBN: 9783131454522 3131454520 Year: 2016 Publisher: Stuttgart ; New York Thieme

Loading...
Export citation

Choose an application

Bookmark

Abstract

The pioneering text by internationally renowned Bobath instructor and therapist Bente Gjelsvik is now in a revised and expanded second edition. The Bobath Concept in Adult Neurology, Second Edition, is updated with the latest theoretical insights, research literature, and clinical guidelines to provide an evidence-based, practice-oriented guide to the assessment and treatment of patients with lesions of the central nervous system. Bridging the gap between theoretical assumptions and everyday therapy practice, the book offers an understanding of the interaction between the central nervous system, the musculoskeletal system, movement, and function, and helps readers apply their knowledge to form hypotheses through clinical reasoning in the rehabilitation of adults with neurological conditions.Highlights:•Completely revised case histories chapter with entirely new patient cases•Key coverage of recent clinical trials and research studies•Restructured and reorganized chapters for a more logical presentation of content•Concise descriptions of the central nervous system and the neuro-musculo-skeletal systems, motor control, and neural and muscular plasticity•Useful discussion of the International Classification of Functioning, Disability, and Health as a basis for assessment•More than 200 lucid photographs and illustrations aid in quick grasp of the materialThe new edition of this seminal volume contains the theoretical information, clinical details, and practical examples of the Bobath Concept for the management of neurological disability. It is a must-read for physical therapists and occupational therapists at all levels who seek the best assessment and treatment outcomes for neurologically impaired individuals. (Bron: website uitgever)

Keywords

Central Nervous System Diseases --- Neurophysiology --- Physical Therapy Modalities --- Neuronal Plasticity --- Central nervous system --- Neurodevelopmental treatment --- Physical therapy --- Neuroplasticity --- Système nerveux central --- Méthode de Bobath --- Physiothérapie --- Plasticité neuronale --- rehabilitation --- physiopathology --- methods --- Diseases --- Patients --- Rehabilitation --- Maladies --- Réadaptation --- neurofysiologie --- Bobathconcept --- cerebrovasculaire aandoeningen --- CVA --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Neurological Physiotherapy --- Neurophysiotherapy --- Physical Therapy Techniques --- Physiotherapy (Techniques) --- Modalities, Physical Therapy --- Modality, Physical Therapy --- Physical Therapy Modality --- Physical Therapy Technique --- Physiotherapies (Techniques) --- Physiotherapy, Neurological --- Techniques, Physical Therapy --- Postoperative Care --- Physical Therapist Assistants --- Système nerveux central --- Méthode de Bobath --- Physiothérapie --- Plasticité neuronale --- Réadaptation --- Group Physiotherapy --- Group Physiotherapies --- Physiotherapies, Group --- Physiotherapy, Group --- Physical Therapy Modalities. --- Neuronal Plasticity. --- rehabilitation. --- physiopathology. --- methods. --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain --- Physical Therapy --- Physical Therapies --- Therapy, Physical

Memory : organization and locus of change
Author:
ISBN: 0195069218 Year: 1991 Publisher: New York (N.Y.): Oxford university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Memory --- Neuronal Plasticity. --- Neurons --- -Neural plasticity --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology --- Retention (Psychology) --- Intellect --- Psychology --- Thought and thinking --- Comprehension --- Executive functions (Neuropsychology) --- Mnemonics --- Perseveration (Psychology) --- Reproduction (Psychology) --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- physiology. --- Physiological aspects --- Neuroplasticity. --- Physiological aspects. --- Neural Plasticity --- Neural Plasticities --- Plasticities, Neural --- Plasticity, Neural --- Neuronal Plasticity --- Cognitive neuroscience --- physiology --- Brain Plasticity --- Brain Plasticities --- Plasticities, Brain --- Plasticity, Brain


Book
Methods in neuronal modeling : from synapses to networks
Authors: ---
ISBN: 0262111330 Year: 1989 Publisher: Cambridge (Mass.) MIT press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Nervous system --- Neural networks (Neurobiology) --- Neurons --- Models, Neurological. --- Neuronal Plasticity --- #TELE:MI2 --- 681.3*I6 --- Biological neural networks --- Nets, Neural (Neurobiology) --- Networks, Neural (Neurobiology) --- Neural nets (Neurobiology) --- Cognitive neuroscience --- Neurobiology --- Neural circuitry --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Neuroplasticity --- Synaptic Plasticity --- Synaptic Pruning --- Brain Plasticity --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Brain Plasticities --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Brain --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Brain --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Model, Neurological --- Neurologic Model --- Neurological Model --- Neurological Models --- Neurologic Models --- Model, Neurologic --- Models, Neurologic --- Nerve cells --- Neurocytes --- Cells --- Organs (Anatomy) --- Neurosciences --- 681.3*I6 Simulation and modeling (Computing methodologies)--See also {681.3*G3} --- Simulation and modeling (Computing methodologies)--See also {681.3*G3} --- Computer simulation --- physiology --- Animal psychology and neurophysiology --- Computer. Automation --- Models, Neurological --- Neural networks (Neurobiology). --- Computer simulation.


Periodical
IEEE transactions on cognitive and developmental systems.
Author:
ISSN: 23798939 Year: 2016 Publisher: Piscataway, NJ : Institute of Electrical and Electronics Engineers,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Cognitive neuroscience --- Neuroplasticity --- Brain --- Cognitive neuroscience. --- Neuroplasticity. --- Cognition --- Neuronal Plasticity. --- Nervous system plasticity --- Neural adaptation --- Neural plasticity --- Neuronal adaptation --- Neuronal plasticity --- Plasticity, Nervous system --- Soft-wired nervous system --- Synaptic plasticity --- Adaptation (Physiology) --- Neurophysiology --- Developmental neurobiology --- Cognitive neuropsychology --- Cognitive science --- Neuropsychology --- Axon Pruning --- Axonal Pruning --- Dendrite Arborization --- Dendrite Pruning --- Dendritic Arborization --- Dendritic Pruning --- Dendritic Remodeling --- Neural Plasticity --- Neurite Pruning --- Neuronal Arborization --- Neuronal Network Remodeling --- Neuronal Pruning --- Neuronal Remodeling --- Synaptic Plasticity --- Synaptic Pruning --- Brain Plasticity --- Plasticity, Neuronal --- Arborization, Dendrite --- Arborization, Dendritic --- Arborization, Neuronal --- Arborizations, Dendrite --- Arborizations, Dendritic --- Arborizations, Neuronal --- Axon Prunings --- Axonal Prunings --- Brain Plasticities --- Dendrite Arborizations --- Dendrite Prunings --- Dendritic Arborizations --- Dendritic Prunings --- Dendritic Remodelings --- Network Remodeling, Neuronal --- Network Remodelings, Neuronal --- Neural Plasticities --- Neurite Prunings --- Neuronal Arborizations --- Neuronal Network Remodelings --- Neuronal Plasticities --- Neuronal Prunings --- Neuronal Remodelings --- Neuroplasticities --- Plasticities, Brain --- Plasticities, Neural --- Plasticities, Neuronal --- Plasticities, Synaptic --- Plasticity, Brain --- Plasticity, Neural --- Plasticity, Synaptic --- Pruning, Axon --- Pruning, Axonal --- Pruning, Dendrite --- Pruning, Dendritic --- Pruning, Neurite --- Pruning, Neuronal --- Pruning, Synaptic --- Prunings, Axon --- Prunings, Axonal --- Prunings, Dendrite --- Prunings, Dendritic --- Prunings, Neurite --- Prunings, Neuronal --- Prunings, Synaptic --- Remodeling, Dendritic --- Remodeling, Neuronal --- Remodeling, Neuronal Network --- Remodelings, Dendritic --- Remodelings, Neuronal --- Remodelings, Neuronal Network --- Synaptic Plasticities --- Synaptic Prunings --- Cell Plasticity --- Cerebrum --- Mind --- Central nervous system --- Head --- Growth --- Growth. --- physiology. --- growth & development.


Book
Molecular Psychiatry
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book highlights important aspects of Molecular Psychiatry, including molecular mechanisms, animal models, biomarkers, advanced methods, drugs and antidepressant response, as well as genetics and epigenetics. Molecular mechanisms are a vital part of the search for the biological basis of psychiatric disorders, providing molecular hints that can later be tested as biomarkers or targets for drug development. Animal models represent a commonly used approach to aid in this bench-to-bed translation; the examples here are social defeat stress and the Roman High-Avoidance (RHA) and the Roman Low-Avoidance (RLA) rats. For biomarkers, psychiatric disorders pose a particular challenge due to the tissue specificity of many currently investigated biomarkers; i.e., not all blood-based measures directly represent changes in the brain. The Ebook includes five articles focused on the challenges of identifying clinically and biologically relevant biomarkers for psychiatric disorders. Scientific progress typically is fostered by the development of new methods. The application of machine learning methods for the proper analysis of Big Data and induced pluripotent stem cells are examples outlined in this Ebook. Furthermore, three articles are devoted to the understanding of the mechanisms of actions of existing drugs with the ultimate goal of identifying ways to predict treatment response in patients. Finally, three articles deepen the insight into the genetics and epigenetics of psychiatric disorders.

Keywords

Medicine --- Mental health services --- cardiovascular disease --- cell adhesion molecules --- immunology --- inflammation --- nervous system --- schizophrenia --- bipolar disorder --- major depressive disorder --- DNA methylation --- response variability --- antipsychotics --- drug design --- multi-target drugs --- polypharmacology --- multi-task learning --- machine learning --- biomarker discovery --- psychiatry --- serotonin --- 5-HT 4 receptor --- 5-HT4R --- depression --- mood disorder --- expression --- Alzheimer’s disease --- cognition --- Parkinson’s disease --- forced swimming --- Roman rat lines --- stress --- hippocampus --- BDNF --- trkB --- PSA-NCAM --- western blot --- immunohistochemistry --- general cognitive function --- intelligence --- GWAS --- genetic correlation --- childhood-onset schizophrenia (COS) --- induced pluripotent stem cell (iPSC) --- copy number variation (CNV) --- early neurodevelopment --- neuronal differentiation --- synapse --- dendritic arborization --- miRNAs --- stress physiology --- cytoskeleton --- actin dynamics --- DRR1 --- TU3A --- FAM107A --- acid sphingomyelinase --- alcohol dependence --- liver enzymes --- sphingolipid metabolism --- withdrawal --- Hsp90 --- GR --- stress response --- steroid hormones --- molecular chaperones --- psychiatric disease --- circadian rhythms --- FKBP51 --- FKBP52 --- CyP40 --- PP5 --- DISC1 --- neurodevelopment --- CRMP-2 --- proteomics --- antidepressant treatment --- HPA axis --- gene expression --- FKBP5 --- sleep --- sleep EEG --- biomarkers --- antidepressants --- cordance --- gender --- sex difference --- antidepressant --- rapid-acting --- Ketamine --- endocrinology --- (2R,6R)-Hydroxynorketamine --- electroconvulsive therapy --- basic-helix-loop-helix --- brain --- coactivator --- glucocorticoids --- mineralocorticoid receptor knockout --- transcription biology --- dopaminergic gene polymorphisms --- affective temperament --- obesity --- alpha-synuclein --- SNCA --- major depression --- Hamilton Scale of Depression --- chemokines --- neuroinflammation --- social defeat --- Immune response --- T cells --- susceptibility --- resilience --- Treg cells --- Th17 cells --- behavior --- PPARγ --- n/a --- Alzheimer's disease --- Parkinson's disease

Listing 1 - 10 of 20 << page
of 2
>>
Sort by