Narrow your search

Library

KU Leuven (10)

VUB (5)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULiège (4)

VIVES (4)

UAntwerpen (2)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2019 (1)

2018 (1)

2016 (4)

2010 (1)

2009 (1)

More...
Listing 1 - 10 of 10
Sort by
Characteristic Classes. (AM-76), Volume 76
Authors: ---
ISBN: 0691081220 9780691081229 140088182X Year: 2016 Volume: 76 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds.In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers.Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

Keywords

Algebraic topology --- Characteristic classes --- Classes caractéristiques --- 515.16 --- #WWIS:d.d. Prof. L. Bouckaert/ALTO --- Classes, Characteristic --- Differential topology --- Topology of manifolds --- Characteristic classes. --- 515.16 Topology of manifolds --- Classes caractéristiques --- Additive group. --- Axiom. --- Basis (linear algebra). --- Boundary (topology). --- Bundle map. --- CW complex. --- Canonical map. --- Cap product. --- Cartesian product. --- Characteristic class. --- Charles Ehresmann. --- Chern class. --- Classifying space. --- Coefficient. --- Cohomology ring. --- Cohomology. --- Compact space. --- Complex dimension. --- Complex manifold. --- Complex vector bundle. --- Complexification. --- Computation. --- Conformal geometry. --- Continuous function. --- Coordinate space. --- Cross product. --- De Rham cohomology. --- Diffeomorphism. --- Differentiable manifold. --- Differential form. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Directional derivative. --- Eilenberg–Steenrod axioms. --- Embedding. --- Equivalence class. --- Euler class. --- Euler number. --- Existence theorem. --- Existential quantification. --- Exterior (topology). --- Fiber bundle. --- Fundamental class. --- Fundamental group. --- General linear group. --- Grassmannian. --- Gysin sequence. --- Hausdorff space. --- Homeomorphism. --- Homology (mathematics). --- Homotopy. --- Identity element. --- Integer. --- Interior (topology). --- Isomorphism class. --- J-homomorphism. --- K-theory. --- Leibniz integral rule. --- Levi-Civita connection. --- Limit of a sequence. --- Linear map. --- Metric space. --- Natural number. --- Natural topology. --- Neighbourhood (mathematics). --- Normal bundle. --- Open set. --- Orthogonal complement. --- Orthogonal group. --- Orthonormal basis. --- Partition of unity. --- Permutation. --- Polynomial. --- Power series. --- Principal ideal domain. --- Projection (mathematics). --- Representation ring. --- Riemannian manifold. --- Sequence. --- Singular homology. --- Smoothness. --- Special case. --- Steenrod algebra. --- Stiefel–Whitney class. --- Subgroup. --- Subset. --- Symmetric function. --- Tangent bundle. --- Tensor product. --- Theorem. --- Thom space. --- Topological space. --- Topology. --- Unit disk. --- Unit vector. --- Variable (mathematics). --- Vector bundle. --- Vector space. --- Topologie differentielle --- Classes caracteristiques --- Classes et nombres caracteristiques


Book
Linear Inequalities and Related Systems. (AM-38), Volume 38
Authors: ---
ISBN: 0691079994 1400881986 9780691079998 Year: 2016 Volume: 38 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Linear Inequalities and Related Systems. (AM-38), Volume 38, will be forthcoming.

Keywords

Operational research. Game theory --- Linear programming. --- Matrices. --- Game theory. --- Games, Theory of --- Theory of games --- Mathematical models --- Mathematics --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Production scheduling --- Programming (Mathematics) --- Banach space. --- Basic solution (linear programming). --- Big O notation. --- Bilinear form. --- Boundary (topology). --- Brouwer fixed-point theorem. --- Characterization (mathematics). --- Coefficient. --- Combination. --- Computation. --- Computational problem. --- Convex combination. --- Convex cone. --- Convex hull. --- Convex set. --- Corollary. --- Correlation and dependence. --- Cramer's rule. --- Cyclic permutation. --- Dedekind cut. --- Degeneracy (mathematics). --- Determinant. --- Diagram (category theory). --- Dilworth's theorem. --- Dimension (vector space). --- Directional derivative. --- Disjoint sets. --- Doubly stochastic matrix. --- Dual space. --- Duality (mathematics). --- Duality (optimization). --- Eigenvalues and eigenvectors. --- Elementary proof. --- Equation solving. --- Equation. --- Equivalence class. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Extreme point. --- Fixed-point theorem. --- Functional analysis. --- Fundamental theorem. --- General equilibrium theory. --- Hall's theorem. --- Hilbert space. --- Incidence matrix. --- Inequality (mathematics). --- Infimum and supremum. --- Invertible matrix. --- Kakutani fixed-point theorem. --- Lagrange multiplier. --- Linear equation. --- Linear inequality. --- Linear map. --- Linear space (geometry). --- Linear subspace. --- Loss function. --- Main diagonal. --- Mathematical induction. --- Mathematical optimization. --- Mathematical problem. --- Max-flow min-cut theorem. --- Maxima and minima. --- Maximal set. --- Maximum flow problem. --- Menger's theorem. --- Minor (linear algebra). --- Monotonic function. --- N-vector. --- Nonlinear programming. --- Nonnegative matrix. --- Parity (mathematics). --- Partially ordered set. --- Permutation matrix. --- Permutation. --- Polyhedron. --- Quantity. --- Representation theorem. --- Row and column vectors. --- Scientific notation. --- Sensitivity analysis. --- Set notation. --- Sign (mathematics). --- Simplex algorithm. --- Simultaneous equations. --- Solution set. --- Special case. --- Subset. --- Summation. --- System of linear equations. --- Theorem. --- Transpose. --- Unit sphere. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Von Neumann's theorem.

Markov processes from K. Itô's perspective
Author:
ISBN: 0691115427 1400835577 0691115435 1322063230 9781400835577 9781322063232 9780691115436 9870691115427 9780691115429 Year: 2003 Publisher: Princeton, New Jersey ; Oxfordshire, England : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô's program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Itô interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Itô's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Itô's stochastic integral calculus. In the second half, the author provides a systematic development of Itô's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Itô's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes.

Keywords

Markov processes. --- Stochastic difference equations. --- Itō, Kiyosi, --- Analysis, Markov --- Chains, Markov --- Markoff processes --- Markov analysis --- Markov chains --- Markov models --- Models, Markov --- Processes, Markov --- Itō, K. --- Ito, Kiesi, --- Itō, Kiyoshi, --- 伊藤淸, --- 伊藤清, --- Itō, Kiyosi, --- Itō, Kiyosi, 1915-2008. --- Stochastic difference equations --- Difference equations --- Stochastic processes --- Abelian group. --- Addition. --- Analytic function. --- Approximation. --- Bernhard Riemann. --- Bounded variation. --- Brownian motion. --- Central limit theorem. --- Change of variables. --- Coefficient. --- Complete metric space. --- Compound Poisson process. --- Continuous function (set theory). --- Continuous function. --- Convergence of measures. --- Convex function. --- Coordinate system. --- Corollary. --- David Hilbert. --- Decomposition theorem. --- Degeneracy (mathematics). --- Derivative. --- Diffeomorphism. --- Differentiable function. --- Differentiable manifold. --- Differential equation. --- Differential geometry. --- Dimension. --- Directional derivative. --- Doob–Meyer decomposition theorem. --- Duality principle. --- Elliptic operator. --- Equation. --- Euclidean space. --- Existential quantification. --- Fourier transform. --- Function space. --- Functional analysis. --- Fundamental solution. --- Fundamental theorem of calculus. --- Homeomorphism. --- Hölder's inequality. --- Initial condition. --- Integral curve. --- Integral equation. --- Integration by parts. --- Invariant measure. --- Itô calculus. --- Itô's lemma. --- Joint probability distribution. --- Lebesgue measure. --- Linear interpolation. --- Lipschitz continuity. --- Local martingale. --- Logarithm. --- Markov chain. --- Markov process. --- Markov property. --- Martingale (probability theory). --- Normal distribution. --- Ordinary differential equation. --- Ornstein–Uhlenbeck process. --- Polynomial. --- Principal part. --- Probability measure. --- Probability space. --- Probability theory. --- Pseudo-differential operator. --- Radon–Nikodym theorem. --- Representation theorem. --- Riemann integral. --- Riemann sum. --- Riemann–Stieltjes integral. --- Scientific notation. --- Semimartingale. --- Sign (mathematics). --- Special case. --- Spectral sequence. --- Spectral theory. --- State space. --- State-space representation. --- Step function. --- Stochastic calculus. --- Stochastic. --- Stratonovich integral. --- Submanifold. --- Support (mathematics). --- Tangent space. --- Tangent vector. --- Taylor's theorem. --- Theorem. --- Theory. --- Topological space. --- Topology. --- Translational symmetry. --- Uniform convergence. --- Variable (mathematics). --- Vector field. --- Weak convergence (Hilbert space). --- Weak topology.


Book
Control theoretic splines
Authors: ---
ISBN: 1282457969 1282936069 9786612936067 9786612457968 1400833876 9781400833870 9781282457966 6612457961 9780691132969 0691132968 Year: 2010 Publisher: Princeton Oxford Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Splines, both interpolatory and smoothing, have a long and rich history that has largely been application driven. This book unifies these constructions in a comprehensive and accessible way, drawing from the latest methods and applications to show how they arise naturally in the theory of linear control systems. Magnus Egerstedt and Clyde Martin are leading innovators in the use of control theoretic splines to bring together many diverse applications within a common framework. In this book, they begin with a series of problems ranging from path planning to statistics to approximation. Using the tools of optimization over vector spaces, Egerstedt and Martin demonstrate how all of these problems are part of the same general mathematical framework, and how they are all, to a certain degree, a consequence of the optimization problem of finding the shortest distance from a point to an affine subspace in a Hilbert space. They cover periodic splines, monotone splines, and splines with inequality constraints, and explain how any finite number of linear constraints can be added. This book reveals how the many natural connections between control theory, numerical analysis, and statistics can be used to generate powerful mathematical and analytical tools. This book is an excellent resource for students and professionals in control theory, robotics, engineering, computer graphics, econometrics, and any area that requires the construction of curves based on sets of raw data.

Keywords

Interpolation. --- Smoothing (Numerical analysis) --- Smoothing (Statistics) --- Curve fitting. --- Splines. --- Spline theory. --- Spline functions --- Approximation theory --- Interpolation --- Joints (Engineering) --- Mechanical movements --- Harmonic drives --- Fitting, Curve --- Numerical analysis --- Least squares --- Statistics --- Curve fitting --- Graduation (Statistics) --- Roundoff errors --- Graphic methods --- Accuracy and precision. --- Affine space. --- Affine variety. --- Algorithm. --- Approximation. --- Arbitrarily large. --- B-spline. --- Banach space. --- Bernstein polynomial. --- Bifurcation theory. --- Big O notation. --- Birkhoff interpolation. --- Boundary value problem. --- Bézier curve. --- Chaos theory. --- Computation. --- Computational problem. --- Condition number. --- Constrained optimization. --- Continuous function (set theory). --- Continuous function. --- Control function (econometrics). --- Control theory. --- Controllability. --- Convex optimization. --- Convolution. --- Cubic Hermite spline. --- Data set. --- Derivative. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Directional derivative. --- Discrete mathematics. --- Dynamic programming. --- Equation. --- Estimation. --- Filtering problem (stochastic processes). --- Gaussian quadrature. --- Gradient descent. --- Gramian matrix. --- Growth curve (statistics). --- Hermite interpolation. --- Hermite polynomials. --- Hilbert projection theorem. --- Hilbert space. --- Initial condition. --- Initial value problem. --- Integral equation. --- Iterative method. --- Karush–Kuhn–Tucker conditions. --- Kernel method. --- Lagrange polynomial. --- Law of large numbers. --- Least squares. --- Linear algebra. --- Linear combination. --- Linear filter. --- Linear map. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Monotonic function. --- Nonlinear programming. --- Nonlinear system. --- Normal distribution. --- Numerical analysis. --- Numerical stability. --- Optimal control. --- Optimization problem. --- Ordinary differential equation. --- Orthogonal polynomials. --- Parameter. --- Piecewise. --- Pointwise. --- Polynomial interpolation. --- Polynomial. --- Probability distribution. --- Quadratic programming. --- Random variable. --- Rate of convergence. --- Ratio test. --- Riccati equation. --- Simpson's rule. --- Simultaneous equations. --- Smoothing spline. --- Smoothing. --- Smoothness. --- Special case. --- Spline (mathematics). --- Spline interpolation. --- Statistic. --- Stochastic calculus. --- Stochastic. --- Telemetry. --- Theorem. --- Trapezoidal rule. --- Waypoint. --- Weight function. --- Without loss of generality.


Book
The Master Equation and the Convergence Problem in Mean Field Games : (AMS-201)
Authors: --- ---
ISBN: 0691193711 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

Keywords

Convergence. --- Mean field theory. --- Many-body problem --- Statistical mechanics --- Functions --- A priori estimate. --- Approximation. --- Bellman equation. --- Boltzmann equation. --- Boundary value problem. --- C0. --- Chain rule. --- Compact space. --- Computation. --- Conditional probability distribution. --- Continuous function. --- Convergence problem. --- Convex set. --- Cooperative game. --- Corollary. --- Decision-making. --- Derivative. --- Deterministic system. --- Differentiable function. --- Directional derivative. --- Discrete time and continuous time. --- Discretization. --- Dynamic programming. --- Emergence. --- Empirical distribution function. --- Equation. --- Estimation. --- Euclidean space. --- Folk theorem (game theory). --- Folk theorem. --- Heat equation. --- Hermitian adjoint. --- Implementation. --- Initial condition. --- Integer. --- Large numbers. --- Linearization. --- Lipschitz continuity. --- Lp space. --- Macroeconomic model. --- Markov process. --- Martingale (probability theory). --- Master equation. --- Mathematical optimization. --- Maximum principle. --- Method of characteristics. --- Metric space. --- Monograph. --- Monotonic function. --- Nash equilibrium. --- Neumann boundary condition. --- Nonlinear system. --- Notation. --- Numerical analysis. --- Optimal control. --- Parameter. --- Partial differential equation. --- Periodic boundary conditions. --- Porous medium. --- Probability measure. --- Probability theory. --- Probability. --- Random function. --- Random variable. --- Randomization. --- Rate of convergence. --- Regime. --- Scientific notation. --- Semigroup. --- Simultaneous equations. --- Small number. --- Smoothness. --- Space form. --- State space. --- State variable. --- Stochastic calculus. --- Stochastic control. --- Stochastic process. --- Stochastic. --- Subset. --- Suggestion. --- Symmetric function. --- Technology. --- Theorem. --- Theory. --- Time consistency. --- Time derivative. --- Uniqueness. --- Variable (mathematics). --- Vector space. --- Viscosity solution. --- Wasserstein metric. --- Weak solution. --- Wiener process. --- Without loss of generality.


Book
The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures
Authors: ---
ISBN: 1400885434 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers a survey of recent developments in the analysis of shock reflection-diffraction, a detailed presentation of original mathematical proofs of von Neumann's conjectures for potential flow, and a collection of related results and new techniques in the analysis of partial differential equations (PDEs), as well as a set of fundamental open problems for further development.Shock waves are fundamental in nature. They are governed by the Euler equations or their variants, generally in the form of nonlinear conservation laws-PDEs of divergence form. When a shock hits an obstacle, shock reflection-diffraction configurations take shape. To understand the fundamental issues involved, such as the structure and transition criteria of different configuration patterns, it is essential to establish the global existence, regularity, and structural stability of shock reflection-diffraction solutions. This involves dealing with several core difficulties in the analysis of nonlinear PDEs-mixed type, free boundaries, and corner singularities-that also arise in fundamental problems in diverse areas such as continuum mechanics, differential geometry, mathematical physics, and materials science. Presenting recently developed approaches and techniques, which will be useful for solving problems with similar difficulties, this book opens up new research opportunities.

Keywords

Shock waves --- Von Neumann algebras. --- MATHEMATICS / Differential Equations / Partial. --- Algebras, Von Neumann --- Algebras, W --- Neumann algebras --- Rings of operators --- W*-algebras --- C*-algebras --- Hilbert space --- Shock (Mechanics) --- Waves --- Diffraction --- Diffraction. --- Mathematics. --- A priori estimate. --- Accuracy and precision. --- Algorithm. --- Andrew Majda. --- Attractor. --- Banach space. --- Bernhard Riemann. --- Big O notation. --- Boundary value problem. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Cauchy problem. --- Coefficient. --- Computation. --- Computational fluid dynamics. --- Conjecture. --- Conservation law. --- Continuum mechanics. --- Convex function. --- Degeneracy (mathematics). --- Demetrios Christodoulou. --- Derivative. --- Dimension. --- Directional derivative. --- Dirichlet boundary condition. --- Dirichlet problem. --- Dissipation. --- Ellipse. --- Elliptic curve. --- Elliptic partial differential equation. --- Embedding problem. --- Equation solving. --- Equation. --- Estimation. --- Euler equations (fluid dynamics). --- Existential quantification. --- Fixed point (mathematics). --- Flow network. --- Fluid dynamics. --- Fluid mechanics. --- Free boundary problem. --- Function (mathematics). --- Function space. --- Fundamental class. --- Fundamental solution. --- Fundamental theorem. --- Hyperbolic partial differential equation. --- Initial value problem. --- Iteration. --- Laplace's equation. --- Linear equation. --- Linear programming. --- Linear space (geometry). --- Mach reflection. --- Mathematical analysis. --- Mathematical optimization. --- Mathematical physics. --- Mathematical problem. --- Mathematical proof. --- Mathematical theory. --- Mathematician. --- Melting. --- Monotonic function. --- Neumann boundary condition. --- Nonlinear system. --- Numerical analysis. --- Parameter space. --- Parameter. --- Partial derivative. --- Partial differential equation. --- Phase boundary. --- Phase transition. --- Potential flow. --- Pressure gradient. --- Quadratic function. --- Regularity theorem. --- Riemann problem. --- Scientific notation. --- Self-similarity. --- Special case. --- Specular reflection. --- Stefan problem. --- Structural stability. --- Subspace topology. --- Symmetrization. --- Theorem. --- Theory. --- Truncation error (numerical integration). --- Two-dimensional space. --- Unification (computer science). --- Variable (mathematics). --- Velocity potential. --- Vortex sheet. --- Vorticity. --- Wave equation. --- Weak convergence (Hilbert space). --- Weak solution.


Book
Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33
Authors: --- ---
ISBN: 1400882184 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33, will be forthcoming.

Keywords

Differential equations, Partial. --- A priori estimate. --- Absolute value. --- Adjoint equation. --- Analytic continuation. --- Analytic function. --- Applied mathematics. --- Axiom. --- Bernhard Riemann. --- Big O notation. --- Bilinear form. --- Boundary value problem. --- Bounded set (topological vector space). --- Calculation. --- Cauchy problem. --- Cauchy sequence. --- Cauchy–Riemann equations. --- Closure (mathematics). --- Coefficient. --- Conservation law. --- Constant coefficients. --- Continuous function. --- Derivative. --- Difference "ient. --- Differentiable function. --- Differential equation. --- Differential form. --- Differential operator. --- Directional derivative. --- Dirichlet boundary condition. --- Dirichlet integral. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Ellipse. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Estimation. --- Exact differential. --- Existence theorem. --- Existential quantification. --- Exponential function. --- Finite difference method. --- Finite difference. --- Function (mathematics). --- Fundamental solution. --- Green's function. --- Harmonic function. --- Heat equation. --- Hilbert space. --- Hyperbolic partial differential equation. --- Hölder's inequality. --- Infinitesimal generator (stochastic processes). --- Initial value problem. --- Integral equation. --- Integration by parts. --- Kronecker delta. --- Lagrange polynomial. --- Laplace's equation. --- Limit (mathematics). --- Limit of a sequence. --- Limit superior and limit inferior. --- Linear differential equation. --- Linear function. --- Linear map. --- Lipschitz continuity. --- Mathematical proof. --- Modulus of continuity. --- Mollifier. --- N-vector. --- Nonlinear system. --- Numerical analysis. --- Operational calculus. --- Ordinary differential equation. --- Parametrix. --- Parity (mathematics). --- Partial derivative. --- Partial differential equation. --- Pointwise. --- Polynomial. --- Quadratic form. --- Quasiconformal mapping. --- Riemann function. --- Riemannian geometry. --- Riemannian manifold. --- Riemann–Liouville integral. --- Self-adjoint operator. --- Self-adjoint. --- Sign (mathematics). --- Simultaneous equations. --- Special case. --- Spectral theory. --- Subsequence. --- Theorem. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Variational principle. --- Wave equation. --- Weak solution.


Book
Singular Points of Complex Hypersurfaces. (AM-61), Volume 61
Author:
ISBN: 1400881811 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Singular Points of Complex Hypersurfaces. (AM-61), Volume 61, will be forthcoming.

Keywords

Geometry, Algebraic. --- 3-sphere. --- Addition. --- Alexander polynomial. --- Algebraic curve. --- Algebraic equation. --- Algebraic geometry. --- Analytic manifold. --- Apply. --- Approximation. --- Binary icosahedral group. --- Boundary (topology). --- Characteristic polynomial. --- Codimension. --- Coefficient. --- Commutator subgroup. --- Commutator. --- Compact group. --- Complex analysis. --- Complex number. --- Complex projective plane. --- Conjecture. --- Contradiction. --- Coordinate space. --- Coordinate system. --- Derivative. --- Differentiable manifold. --- Dimension. --- Directional derivative. --- Euclidean space. --- Euler number. --- Exact sequence. --- Existential quantification. --- Exotic sphere. --- Fiber bundle. --- Fibration. --- Field of fractions. --- Finite group. --- Finite set. --- Finitely generated group. --- Formal power series. --- Free abelian group. --- Free group. --- Fundamental group. --- Geometry. --- Hermitian matrix. --- Hessian matrix. --- Homology (mathematics). --- Homology sphere. --- Homotopy sphere. --- Homotopy. --- Hopf fibration. --- Hypersurface. --- Icosahedron. --- Implicit function theorem. --- Integer. --- Integral domain. --- Inverse function theorem. --- Knot group. --- Knot theory. --- Line segment. --- Linear combination. --- Linear map. --- Manifold. --- Minor (linear algebra). --- Morse theory. --- N-sphere. --- Neighbourhood (mathematics). --- Normal (geometry). --- Normal subgroup. --- Open set. --- Orientability. --- Parametrization. --- Polynomial. --- Prime ideal. --- Principal ideal. --- Projective space. --- Real number. --- Regular icosahedron. --- Retract. --- Riemannian manifold. --- Second derivative. --- Sign (mathematics). --- Simply connected space. --- Smoothness. --- Special case. --- Submanifold. --- Subset. --- Surjective function. --- Tangent space. --- Theorem. --- Topological manifold. --- Topology. --- Transcendence degree. --- Tubular neighborhood. --- Unit interval. --- Unit sphere. --- Unit vector. --- Variable (mathematics). --- Vector field. --- Vector space.

Self-Regularity : A New Paradigm for Primal-Dual Interior-Point Algorithms
Authors: --- ---
ISBN: 1282087606 9786612087608 140082513X 9781400825134 1400814529 9781400814527 9780691091938 0691091935 9780691091921 0691091927 0691091927 Year: 2003 Publisher: Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function.The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs.Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.

Keywords

Interior-point methods. --- Mathematical optimization. --- Programming (Mathematics). --- Mathematical optimization --- Interior-point methods --- Programming (Mathematics) --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Mathematical programming --- Goal programming --- Algorithms --- Functional equations --- Operations research --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Simulation methods --- System analysis --- 519.85 --- 681.3*G16 --- 681.3*G16 Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 519.85 Mathematical programming --- Accuracy and precision. --- Algorithm. --- Analysis of algorithms. --- Analytic function. --- Associative property. --- Barrier function. --- Binary number. --- Block matrix. --- Combination. --- Combinatorial optimization. --- Combinatorics. --- Complexity. --- Conic optimization. --- Continuous optimization. --- Control theory. --- Convex optimization. --- Delft University of Technology. --- Derivative. --- Differentiable function. --- Directional derivative. --- Division by zero. --- Dual space. --- Duality (mathematics). --- Duality gap. --- Eigenvalues and eigenvectors. --- Embedding. --- Equation. --- Estimation. --- Existential quantification. --- Explanation. --- Feasible region. --- Filter design. --- Function (mathematics). --- Implementation. --- Instance (computer science). --- Invertible matrix. --- Iteration. --- Jacobian matrix and determinant. --- Jordan algebra. --- Karmarkar's algorithm. --- Karush–Kuhn–Tucker conditions. --- Line search. --- Linear complementarity problem. --- Linear function. --- Linear programming. --- Lipschitz continuity. --- Local convergence. --- Loss function. --- Mathematician. --- Mathematics. --- Matrix function. --- McMaster University. --- Monograph. --- Multiplication operator. --- Newton's method. --- Nonlinear programming. --- Nonlinear system. --- Notation. --- Operations research. --- Optimal control. --- Optimization problem. --- Parameter (computer programming). --- Parameter. --- Pattern recognition. --- Polyhedron. --- Polynomial. --- Positive semidefinite. --- Positive-definite matrix. --- Quadratic function. --- Requirement. --- Result. --- Scientific notation. --- Second derivative. --- Self-concordant function. --- Sensitivity analysis. --- Sign (mathematics). --- Signal processing. --- Simplex algorithm. --- Simultaneous equations. --- Singular value. --- Smoothness. --- Solution set. --- Solver. --- Special case. --- Subset. --- Suggestion. --- Technical report. --- Theorem. --- Theory. --- Time complexity. --- Two-dimensional space. --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics). --- Variational inequality. --- Variational principle. --- Without loss of generality. --- Worst-case complexity. --- Yurii Nesterov. --- Mathematical Optimization --- Mathematics --- Programming (mathematics)


Book
Elliptic partial differential equations and quasiconformal mappings in the plane
Authors: --- ---
ISBN: 1282157272 9786612157271 1400830117 9781400830114 9780691137773 0691137773 9781282157279 6612157275 Year: 2009 Publisher: Princeton, NJ Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Keywords

Differential equations, Elliptic. --- Quasiconformal mappings. --- Mappings, Quasiconformal --- Conformal mapping --- Functions of complex variables --- Geometric function theory --- Mappings (Mathematics) --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Adjoint equation. --- Analytic function. --- Analytic proof. --- Banach space. --- Beltrami equation. --- Boundary value problem. --- Bounded mean oscillation. --- Calculus of variations. --- Cantor function. --- Cartesian product. --- Cauchy–Riemann equations. --- Central limit theorem. --- Characterization (mathematics). --- Complex analysis. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugate variables. --- Continuous function (set theory). --- Coordinate space. --- Degeneracy (mathematics). --- Differential equation. --- Directional derivative. --- Dirichlet integral. --- Dirichlet problem. --- Disk (mathematics). --- Distribution (mathematics). --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Equations of motion. --- Euler–Lagrange equation. --- Explicit formulae (L-function). --- Factorization. --- Fourier transform. --- Fubini's theorem. --- Geometric function theory. --- Geometric measure theory. --- Geometry. --- Harmonic conjugate. --- Harmonic function. --- Harmonic map. --- Harmonic measure. --- Hilbert transform. --- Holomorphic function. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperbolic trigonometry. --- Invertible matrix. --- Jacobian matrix and determinant. --- Julia set. --- Lagrangian (field theory). --- Laplace's equation. --- Limit (mathematics). --- Linear differential equation. --- Linear equation. --- Linear fractional transformation. --- Linear map. --- Linearization. --- Lipschitz continuity. --- Locally integrable function. --- Lusin's theorem. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Maxwell's equations. --- Measure (mathematics). --- Metric space. --- Mirror symmetry (string theory). --- Moduli space. --- Modulus of continuity. --- Monodromy theorem. --- Monotonic function. --- Montel's theorem. --- Operator (physics). --- Operator theory. --- Partial derivative. --- Partial differential equation. --- Poisson formula. --- Polynomial. --- Quadratic function. --- Quasiconformal mapping. --- Quasiconvex function. --- Quasisymmetric function. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Riemannian geometry. --- Riesz transform. --- Riesz–Thorin theorem. --- Sign (mathematics). --- Sobolev space. --- Square-integrable function. --- Support (mathematics). --- Theorem. --- Two-dimensional space. --- Uniformization theorem. --- Upper half-plane. --- Variable (mathematics). --- Weyl's lemma (Laplace equation).

Listing 1 - 10 of 10
Sort by