Narrow your search

Library

KU Leuven (7)

UGent (6)

VIVES (5)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULiège (4)

ULB (3)

More...

Resource type

book (10)

periodical (1)


Language

English (11)


Year
From To Submit

2021 (3)

2016 (2)

2015 (1)

2010 (2)

2009 (1)

More...
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
DroNet '15 : proceedings of the 2015 Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use : May 18, 201, Florence, Italy
Author:
ISBN: 1450335012 Year: 2015 Publisher: New York : ACM,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
DroNet '16 : proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use : June 26, 2016, Singapore
Author:
ISBN: 1450344054 Year: 2016 Publisher: New York : ACM,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Introduction to the design of fixed-wing micro air vehicles : including three case studies.
Authors: --- --- ---
ISBN: 1563478498 9781563478499 Year: 2007 Publisher: Reston American Institute of Aeronautics and Astronautics


Book
Unmanned aerial systems : early integration progress and considerations
Author:
ISBN: 1634846605 9781634846608 9781634846523 Year: 2016 Publisher: New York : Nova Publishers,


Periodical
International journal of micro air vehicles.
ISSN: 17568293 17568307 Year: 2009 Publisher: Thousand Oaks, CA : SAGE Publications,


Book
Autonomous flying robots : unmanned aerial vehicles and micro aerial vehicles.
Authors: --- --- --- ---
ISBN: 9784431538561 9784431538554 Year: 2010 Publisher: Tokyo Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.

Fixed and flapping wing aerodynamics for micro air vehicle applications : [collection of papers presented at the Conference on fixed, flapping and rotary wing aerodynamics at very low Reynolds numbers, held 5-7 June 2000 at the University of Notre-Dame]
Authors: ---
ISBN: 1563475170 Year: 2001 Publisher: Reston : American institute of aeronautics and astronautics,


Book
Autonomous Flying Robots : Unmanned Aerial Vehicles and Micro Aerial Vehicles
Authors: --- --- --- ---
ISBN: 4431546871 4431538550 9786613002549 4431538569 128300254X Year: 2010 Publisher: Tokyo : Springer Japan : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.


Book
Modelling and Control of Mechatronic and Robotic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Keywords

Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method


Book
Modelling and Control of Mechatronic and Robotic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Keywords

Technology: general issues --- bionic mechanism design --- synthesis --- exoskeleton --- finger motion rehabilitation --- super-twisting control law --- robot manipulators --- fast terminal sliding mode control --- semi-active seat suspension --- integrated model --- control --- fuzzy logic-based self-tuning --- PID --- super-twisting --- sliding mode extended state observer --- saturation function --- fuzzy logic --- attenuate disturbance --- pHRI --- variable stiffness actuator --- V2SOM --- friendly cobots --- safety criteria --- human–robot collisions --- underwater vehicle-manipulator system --- motion planning --- coordinated motion control --- inertial delay control --- fuzzy compensator --- extended Kalman filter --- feedback linearization --- CPG --- self-growing network --- quadruped robot --- trot gait --- directional index --- serial robot --- performance evaluation --- kinematics --- hydraulic press --- energy saving --- energy efficiency --- installed power --- processing performance --- space robotics --- planetary surface exploration --- terrain awareness --- mechanics of vehicle–terrain interaction --- vehicle dynamics --- multi-support shaft system vibration control --- combined simulation --- transverse bending vibration --- Smart Spring --- adaptive control --- hydraulics --- differential cylinder --- feedforward --- motion control --- manipulator arm --- trajectory optimization --- “whip-lashing” method --- reduction of cycle time --- trajectory planning --- SolidWorks and MATLAB software applications --- dynamic modeling --- multibody simulation --- robotic lander --- variable radius drum --- impact analysis --- cable-driven parallel robots --- cable-suspended robots --- dynamic workspace --- throwing robots --- casting robot --- redesign --- slider-crank mechanism --- optimization --- synthesis problem --- rehabilitation devices --- six-wheel drive (6WD) --- skid steering --- electric unmanned ground vehicle (EUGV) --- driving force distribution --- vehicle motion control --- maneuverability and stability --- hexapod robot --- path planning --- energy consumption --- cost of transport --- heuristic optimization --- mobile robots --- tractor-trailer --- wheel slip compensation --- gait optimization --- genetic algorithm --- quadrupedal locomotion --- evolutionary programming --- optimal contact forces --- micro aerial vehicles --- visual-based control --- Kalman filter --- n/a --- human-robot collisions --- mechanics of vehicle-terrain interaction --- "whip-lashing" method

Listing 1 - 10 of 11 << page
of 2
>>
Sort by