Narrow your search

Library

KU Leuven (6)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

VUB (4)

KBR (1)

UCLouvain (1)


Resource type

book (6)


Language

English (6)


Year
From To Submit

2016 (2)

2004 (1)

2002 (1)

1998 (1)

1996 (1)

Listing 1 - 6 of 6
Sort by
On the Tangent
Author:
ISBN: 0691120439 0691120447 1299133258 1400837170 9780691120430 9781400837175 9780691120447 Year: 2004 Volume: no. 157 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.

Keywords

512.73 --- Cohomology theory of algebraic varieties and schemes --- 512.73 Cohomology theory of algebraic varieties and schemes --- Algebraic cycles. --- Hodge theory. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Complex manifolds --- Differentiable manifolds --- Geometry, Algebraic --- Homology theory --- Cycles, Algebraic --- Algebraic cycles --- Hodge theory --- Addition. --- Algebraic K-theory. --- Algebraic character. --- Algebraic curve. --- Algebraic cycle. --- Algebraic function. --- Algebraic geometry. --- Algebraic number. --- Algebraic surface. --- Algebraic variety. --- Analytic function. --- Approximation. --- Arithmetic. --- Chow group. --- Codimension. --- Coefficient. --- Coherent sheaf cohomology. --- Coherent sheaf. --- Cohomology. --- Cokernel. --- Combination. --- Compass-and-straightedge construction. --- Complex geometry. --- Complex number. --- Computable function. --- Conjecture. --- Coordinate system. --- Coprime integers. --- Corollary. --- Cotangent bundle. --- Diagram (category theory). --- Differential equation. --- Differential form. --- Differential geometry of surfaces. --- Dimension (vector space). --- Dimension. --- Divisor. --- Duality (mathematics). --- Elliptic function. --- Embedding. --- Equation. --- Equivalence class. --- Equivalence relation. --- Exact sequence. --- Existence theorem. --- Existential quantification. --- Fermat's theorem. --- Formal proof. --- Fourier. --- Free group. --- Functional equation. --- Generic point. --- Geometry. --- Group homomorphism. --- Hereditary property. --- Hilbert scheme. --- Homomorphism. --- Injective function. --- Integer. --- Integral curve. --- K-group. --- K-theory. --- Linear combination. --- Mathematics. --- Moduli (physics). --- Moduli space. --- Multivector. --- Natural number. --- Natural transformation. --- Neighbourhood (mathematics). --- Open problem. --- Parameter. --- Polynomial ring. --- Principal part. --- Projective variety. --- Quantity. --- Rational function. --- Rational mapping. --- Reciprocity law. --- Regular map (graph theory). --- Residue theorem. --- Root of unity. --- Scientific notation. --- Sheaf (mathematics). --- Smoothness. --- Statistical significance. --- Subgroup. --- Summation. --- Tangent space. --- Tangent vector. --- Tangent. --- Terminology. --- Tetrahedron. --- Theorem. --- Transcendental function. --- Transcendental number. --- Uniqueness theorem. --- Vector field. --- Vector space. --- Zariski topology.

The real Fatou conjecture
Authors: ---
ISBN: 0691002576 1400865182 9781400865185 9780691002583 9780691002576 0691002584 9780691002583 Year: 1998 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.

Keywords

Geodesics (Mathematics) --- Polynomials. --- Mappings (Mathematics) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Transformations (Mathematics) --- Algebra --- Geometry, Differential --- Global analysis (Mathematics) --- Mathematics --- Absolute value. --- Affine transformation. --- Algebraic function. --- Analytic continuation. --- Analytic function. --- Arithmetic. --- Automorphism. --- Big O notation. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Canonical map. --- Change of variables. --- Chebyshev polynomials. --- Combinatorics. --- Commutative property. --- Complex number. --- Complex plane. --- Complex quadratic polynomial. --- Conformal map. --- Conjecture. --- Conjugacy class. --- Conjugate points. --- Connected component (graph theory). --- Connected space. --- Continuous function. --- Corollary. --- Covering space. --- Critical point (mathematics). --- Dense set. --- Derivative. --- Diffeomorphism. --- Dimension. --- Disjoint sets. --- Disjoint union. --- Disk (mathematics). --- Equicontinuity. --- Estimation. --- Existential quantification. --- Fibonacci. --- Functional equation. --- Fundamental domain. --- Generalization. --- Great-circle distance. --- Hausdorff distance. --- Holomorphic function. --- Homeomorphism. --- Homotopy. --- Hyperbolic function. --- Imaginary number. --- Implicit function theorem. --- Injective function. --- Integer. --- Intermediate value theorem. --- Interval (mathematics). --- Inverse function. --- Irreducible polynomial. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Linear map. --- Local diffeomorphism. --- Mathematical induction. --- Mathematical proof. --- Maxima and minima. --- Meromorphic function. --- Moduli (physics). --- Monomial. --- Monotonic function. --- Natural number. --- Neighbourhood (mathematics). --- Open set. --- Parameter. --- Periodic function. --- Periodic point. --- Phase space. --- Point at infinity. --- Polynomial. --- Projection (mathematics). --- Quadratic function. --- Quadratic. --- Quasiconformal mapping. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Schwarzian derivative. --- Scientific notation. --- Subsequence. --- Theorem. --- Theory. --- Topological conjugacy. --- Topological entropy. --- Topology. --- Union (set theory). --- Unit circle. --- Unit disk. --- Upper and lower bounds. --- Upper half-plane. --- Z0.

Chaotic transitions in deterministic and stochastic dynamical systems : applications of Melnikov processes in engineering, physics, and neuroscience
Author:
ISBN: 0691050945 1400832500 9781400832507 9780691144344 0691144346 9780691144344 9780691050942 Year: 2002 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.

Keywords

Differentiable dynamical systems. --- Chaotic behavior in systems. --- Stochastic systems. --- Systems, Stochastic --- Stochastic processes --- System analysis --- Chaos in systems --- Chaos theory --- Chaotic motion in systems --- Differentiable dynamical systems --- Dynamics --- Nonlinear theories --- System theory --- Differential dynamical systems --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Affine transformation. --- Amplitude. --- Arbitrarily large. --- Attractor. --- Autocovariance. --- Big O notation. --- Central limit theorem. --- Change of variables. --- Chaos theory. --- Coefficient of variation. --- Compound Probability. --- Computational problem. --- Control theory. --- Convolution. --- Coriolis force. --- Correlation coefficient. --- Covariance function. --- Cross-covariance. --- Cumulative distribution function. --- Cutoff frequency. --- Deformation (mechanics). --- Derivative. --- Deterministic system. --- Diagram (category theory). --- Diffeomorphism. --- Differential equation. --- Dirac delta function. --- Discriminant. --- Dissipation. --- Dissipative system. --- Dynamical system. --- Eigenvalues and eigenvectors. --- Equations of motion. --- Even and odd functions. --- Excitation (magnetic). --- Exponential decay. --- Extreme value theory. --- Flow velocity. --- Fluid dynamics. --- Forcing (recursion theory). --- Fourier series. --- Fourier transform. --- Fractal dimension. --- Frequency domain. --- Gaussian noise. --- Gaussian process. --- Harmonic analysis. --- Harmonic function. --- Heteroclinic orbit. --- Homeomorphism. --- Homoclinic orbit. --- Hyperbolic point. --- Inference. --- Initial condition. --- Instability. --- Integrable system. --- Invariant manifold. --- Iteration. --- Joint probability distribution. --- LTI system theory. --- Limit cycle. --- Linear differential equation. --- Logistic map. --- Marginal distribution. --- Moduli (physics). --- Multiplicative noise. --- Noise (electronics). --- Nonlinear control. --- Nonlinear system. --- Ornstein–Uhlenbeck process. --- Oscillation. --- Parameter space. --- Parameter. --- Partial differential equation. --- Perturbation function. --- Phase plane. --- Phase space. --- Poisson distribution. --- Probability density function. --- Probability distribution. --- Probability theory. --- Probability. --- Production–possibility frontier. --- Relative velocity. --- Scale factor. --- Shear stress. --- Spectral density. --- Spectral gap. --- Standard deviation. --- Stochastic process. --- Stochastic resonance. --- Stochastic. --- Stream function. --- Surface stress. --- Symbolic dynamics. --- The Signal and the Noise. --- Topological conjugacy. --- Transfer function. --- Variance. --- Vorticity.


Book
Complex Dynamics and Renormalization (AM-135), Volume 135
Author:
ISBN: 1400882559 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Addressing researchers and graduate students in the active meeting ground of analysis, geometry, and dynamics, this book presents a study of renormalization of quadratic polynomials and a rapid introduction to techniques in complex dynamics. Its central concern is the structure of an infinitely renormalizable quadratic polynomial f(z) = z2 + c. As discovered by Feigenbaum, such a mapping exhibits a repetition of form at infinitely many scales. Drawing on universal estimates in hyperbolic geometry, this work gives an analysis of the limiting forms that can occur and develops a rigidity criterion for the polynomial f. This criterion supports general conjectures about the behavior of rational maps and the structure of the Mandelbrot set. The course of the main argument entails many facets of modern complex dynamics. Included are foundational results in geometric function theory, quasiconformal mappings, and hyperbolic geometry. Most of the tools are discussed in the setting of general polynomials and rational maps.

Keywords

Renormalization (Physics) --- Polynomials. --- Dynamics. --- Mathematical physics. --- Analytic function. --- Attractor. --- Automorphism. --- Bernhard Riemann. --- Bounded set. --- Branched covering. --- Cantor set. --- Cardioid. --- Chain rule. --- Coefficient. --- Combinatorics. --- Complex manifold. --- Complex plane. --- Complex torus. --- Conformal geometry. --- Conformal map. --- Conjecture. --- Connected space. --- Covering space. --- Cyclic group. --- Degeneracy (mathematics). --- Dense set. --- Diagram (category theory). --- Diameter. --- Differential geometry of surfaces. --- Dihedral group. --- Dimension (vector space). --- Dimension. --- Disjoint sets. --- Disk (mathematics). --- Dynamical system. --- Endomorphism. --- Equivalence class. --- Equivalence relation. --- Ergodic theory. --- Euler characteristic. --- Filled Julia set. --- Geometric function theory. --- Geometry. --- Hausdorff dimension. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Hyperbolic geometry. --- Implicit function theorem. --- Injective function. --- Integer matrix. --- Interval (mathematics). --- Inverse limit. --- Julia set. --- Kleinian group. --- Limit point. --- Limit set. --- Linear map. --- Mandelbrot set. --- Manifold. --- Markov partition. --- Mathematical induction. --- Maxima and minima. --- Measure (mathematics). --- Moduli (physics). --- Monic polynomial. --- Montel's theorem. --- Möbius transformation. --- Natural number. --- Open set. --- Orbifold. --- Periodic point. --- Permutation. --- Point at infinity. --- Pole (complex analysis). --- Polynomial. --- Proper map. --- Quadratic differential. --- Quadratic function. --- Quadratic. --- Quasi-isometry. --- Quasiconformal mapping. --- Quotient space (topology). --- Removable singularity. --- Renormalization. --- Riemann mapping theorem. --- Riemann sphere. --- Riemann surface. --- Rigidity theory (physics). --- Scalar (physics). --- Schwarz lemma. --- Scientific notation. --- Special case. --- Structural stability. --- Subgroup. --- Subsequence. --- Symbolic dynamics. --- Tangent space. --- Theorem. --- Uniformization theorem. --- Uniformization. --- Union (set theory). --- Unit disk. --- Upper and lower bounds.


Book
Meromorphic Functions and Analytic Curves. (AM-12)
Author:
ISBN: 1400882281 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Meromorphic Functions and Analytic Curves. (AM-12), will be forthcoming.

Keywords

Functions. --- Algebraic curve. --- Algebraic equation. --- Algebraic function. --- Algebraic surface. --- Analytic continuation. --- Analytic function. --- Arc (geometry). --- Argument principle. --- Basis (linear algebra). --- Bernhard Riemann. --- Betti number. --- Big O notation. --- Boundary value problem. --- C-function. --- C0. --- Characteristic function (probability theory). --- Circumference. --- Coefficient. --- Combination. --- Compact Riemann surface. --- Compact space. --- Complex analysis. --- Complex number. --- Computation. --- Concentric. --- Conformal map. --- Continuous function. --- Coordinate system. --- Degeneracy (mathematics). --- Derivative. --- Diameter. --- Differential form. --- Dimension. --- Disk (mathematics). --- Dual curve. --- Entire function. --- Equation. --- Equidistant. --- Euler characteristic. --- Existential quantification. --- Exponential function. --- Exterior (topology). --- Floor and ceiling functions. --- Fundamental theorem. --- Gauge factor. --- General position. --- Geometry. --- Harmonic function. --- Heine–Borel theorem. --- Hermann Weyl. --- Homogeneous coordinates. --- Improper integral. --- Integer. --- Interior (topology). --- Inverse function. --- Limit superior and limit inferior. --- Line integral. --- Linear differential equation. --- Linear map. --- Local parameter. --- Logarithm. --- Logarithmic derivative. --- Mathematics. --- Maximum principle. --- Meromorphic function. --- Modular form. --- Modular group. --- Moduli (physics). --- Monodromy theorem. --- Multiple integral. --- Natural number. --- Notation. --- Order by. --- Parallelepiped. --- Parameter. --- Polyad. --- Polynomial. --- Power series. --- Prime number. --- Probability. --- Projection (mathematics). --- Quantity. --- Rational function. --- Real variable. --- Rectangle. --- Residue theorem. --- Riemann integral. --- Riemann surface. --- Rotational symmetry. --- Second derivative. --- Simply connected space. --- Subset. --- Summation. --- Theorem. --- Theory. --- Topological space. --- Total order. --- Unit circle. --- Unit vector. --- Variable (mathematics).

Renormalization and 3-manifolds which fiber over the circle
Author:
ISBN: 0691011540 1400865174 9781400865178 9780691011530 0691011532 9780691011547 Year: 1996 Volume: 142 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.

Keywords

Differential dynamical systems --- Drie-menigvuldigheden (Topologie) --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Differentiable dynamical systems. --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Low-dimensional topology --- Topological manifolds --- Algebraic topology. --- Analytic continuation. --- Automorphism. --- Beltrami equation. --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Circular symmetry. --- Combinatorics. --- Compact space. --- Complex conjugate. --- Complex manifold. --- Complex number. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Convex hull. --- Covering space. --- Deformation theory. --- Degeneracy (mathematics). --- Dimension (vector space). --- Disk (mathematics). --- Dynamical system. --- Eigenvalues and eigenvectors. --- Factorization. --- Fiber bundle. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental solution. --- G-module. --- Geodesic. --- Geometry. --- Harmonic analysis. --- Hausdorff dimension. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Infimum and supremum. --- Injective function. --- Intersection (set theory). --- Invariant subspace. --- Isometry. --- Julia set. --- Kleinian group. --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Limit point. --- Limit set. --- Linear map. --- Mandelbrot set. --- Manifold. --- Mapping class group. --- Measure (mathematics). --- Moduli (physics). --- Moduli space. --- Modulus of continuity. --- Möbius transformation. --- N-sphere. --- Newton's method. --- Permutation. --- Point at infinity. --- Polynomial. --- Quadratic function. --- Quasi-isometry. --- Quasiconformal mapping. --- Quasisymmetric function. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Renormalization. --- Representation of a Lie group. --- Representation theory. --- Riemann sphere. --- Riemann surface. --- Riemannian manifold. --- Schwarz lemma. --- Simply connected space. --- Special case. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Tangent space. --- Teichmüller space. --- Theorem. --- Topology of uniform convergence. --- Topology. --- Trace (linear algebra). --- Transversal (geometry). --- Transversality (mathematics). --- Triangle inequality. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector field. --- Differentiable dynamical systems --- 515.16 --- 515.16 Topology of manifolds --- Topology of manifolds

Listing 1 - 6 of 6
Sort by