Narrow your search

Library

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

VIVES (3)

VUB (3)

ULiège (1)


Resource type

book (3)


Language

English (3)


Year
From To Submit

2013 (1)

2009 (1)

2006 (1)

Listing 1 - 3 of 3
Sort by

Book
Degenerate diffusion operators arising in population biology
Authors: ---
ISBN: 1400847184 1299051456 1400846102 9781400846108 9780691157122 069115712X 9780691157153 0691157154 9781299051454 Year: 2013 Publisher: Princeton

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process. Charles Epstein and Rafe Mazzeo use an "integral kernel method" to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high co-dimensional strata of the boundary. Epstein and Mazzeo establish the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. They show that the semigroups defined by these operators have holomorphic extensions to the right half-plane. Epstein and Mazzeo also demonstrate precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.

Keywords

Elliptic operators. --- Markov processes. --- Population biology --- Analysis, Markov --- Chains, Markov --- Markoff processes --- Markov analysis --- Markov chains --- Markov models --- Models, Markov --- Processes, Markov --- Stochastic processes --- Differential operators, Elliptic --- Operators, Elliptic --- Partial differential operators --- Mathematical models. --- 1-dimensional integral. --- Euclidean model problem. --- Euclidean space. --- Hlder space. --- Hopf boundary point. --- Kimura diffusion equation. --- Kimura diffusion operator. --- Laplace transform. --- Schauder estimate. --- WrightІisher geometry. --- adjoint operator. --- backward Kolmogorov equation. --- boundary behavior. --- degenerate elliptic operator. --- doubling. --- elliptic Kimura operator. --- elliptic equation. --- forward Kolmogorov equation. --- function space. --- general model problem. --- generalized Kimura diffusion. --- heat equation. --- heat kernel. --- higher dimensional corner. --- higher regularity. --- holomorphic semi-group. --- homogeneous Cauchy problem. --- hybrid space. --- hypersurface boundary. --- induction hypothesis. --- induction. --- inhomogeneous problem. --- irregular solution. --- long time asymptotics. --- long-time behavior. --- manifold with corners. --- martingale problem. --- mathematical finance. --- model problem. --- normal form. --- normal vector. --- null-space. --- off-diagonal behavior. --- open orthant. --- parabolic equation. --- perturbation theory. --- polyhedron. --- population genetics. --- probability theory. --- regularity. --- resolvent operator. --- semi-group. --- solution operator. --- uniqueness.


Book
Outer billiards on kites
Author:
ISBN: 1282458582 9786612458583 1400831970 9781400831975 0691142483 9780691142487 0691142491 9780691142494 9781282458581 6612458585 Year: 2009 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950's, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.

Keywords

Hyperbolic spaces. --- Singularities (Mathematics) --- Transformations (Mathematics) --- Geometry, Plane. --- Plane geometry --- Algorithms --- Differential invariants --- Geometry, Differential --- Geometry, Algebraic --- Hyperbolic complex manifolds --- Manifolds, Hyperbolic complex --- Spaces, Hyperbolic --- Geometry, Non-Euclidean --- Abelian group. --- Automorphism. --- Big O notation. --- Bijection. --- Binary number. --- Bisection. --- Borel set. --- C0. --- Calculation. --- Cantor set. --- Cartesian coordinate system. --- Combination. --- Compass-and-straightedge construction. --- Congruence subgroup. --- Conjecture. --- Conjugacy class. --- Continuity equation. --- Convex lattice polytope. --- Convex polytope. --- Coprime integers. --- Counterexample. --- Cyclic group. --- Diameter. --- Diophantine approximation. --- Diophantine equation. --- Disjoint sets. --- Disjoint union. --- Division by zero. --- Embedding. --- Equation. --- Equivalence class. --- Ergodic theory. --- Ergodicity. --- Factorial. --- Fiber bundle. --- Fibonacci number. --- Fundamental domain. --- Gauss map. --- Geometry. --- Half-integer. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperplane. --- Ideal triangle. --- Intersection (set theory). --- Interval exchange transformation. --- Inverse function. --- Inverse limit. --- Isometry group. --- Lattice (group). --- Limit set. --- Line segment. --- Linear algebra. --- Linear function. --- Line–line intersection. --- Main diagonal. --- Modular group. --- Monotonic function. --- Multiple (mathematics). --- Orthant. --- Outer billiard. --- Parallelogram. --- Parameter. --- Partial derivative. --- Penrose tiling. --- Permutation. --- Piecewise. --- Polygon. --- Polyhedron. --- Polytope. --- Product topology. --- Projective geometry. --- Rectangle. --- Renormalization. --- Rhombus. --- Right angle. --- Rotational symmetry. --- Sanity check. --- Scientific notation. --- Semicircle. --- Sign (mathematics). --- Special case. --- Square root of 2. --- Subsequence. --- Summation. --- Symbolic dynamics. --- Symmetry group. --- Tangent. --- Tetrahedron. --- Theorem. --- Toy model. --- Translational symmetry. --- Trapezoid. --- Triangle group. --- Triangle inequality. --- Two-dimensional space. --- Upper and lower bounds. --- Upper half-plane. --- Without loss of generality. --- Yair Minsky.

Impulsive and hybrid dynamical systems : stability, dissipativity, and control
Authors: --- ---
ISBN: 1400865247 9781400865246 9780691127156 0691127158 Year: 2006 Publisher: Princeton, New Jersey ; Oxfordshire, England : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar treatments by developing invariant set stability theorems, partial stability, Lagrange stability, boundedness, ultimate boundedness, dissipativity theory, vector dissipativity theory, energy-based hybrid control, optimal control, disturbance rejection control, and robust control for nonlinear impulsive and hybrid dynamical systems. A major contribution to mathematical system theory and control system theory, this book is written from a system-theoretic point of view with the highest standards of exposition and rigor. It is intended for graduate students, researchers, and practitioners of engineering and applied mathematics as well as computer scientists, physicists, and other scientists who seek a fundamental understanding of the rich dynamical behavior of impulsive and hybrid dynamical systems.

Keywords

Automatic control. --- Control theory. --- Dynamics. --- Discrete-time systems. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Dynamics --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- DES (System analysis) --- Discrete event systems --- Sampled-data systems --- Digital control systems --- Discrete mathematics --- System analysis --- Linear time invariant systems --- Actuator. --- Adaptive control. --- Algorithm. --- Amplitude. --- Analog computer. --- Arbitrarily large. --- Asymptote. --- Asymptotic analysis. --- Axiom. --- Balance equation. --- Bode plot. --- Boundedness. --- Calculation. --- Center of mass (relativistic). --- Coefficient of restitution. --- Continuous function. --- Convex set. --- Differentiable function. --- Differential equation. --- Dissipation. --- Dissipative system. --- Dynamical system. --- Dynamical systems theory. --- Energy. --- Equations of motion. --- Equilibrium point. --- Escapement. --- Euler–Lagrange equation. --- Exponential stability. --- Forms of energy. --- Hamiltonian mechanics. --- Hamiltonian system. --- Hermitian matrix. --- Hooke's law. --- Hybrid system. --- Identity matrix. --- Inequality (mathematics). --- Infimum and supremum. --- Initial condition. --- Instability. --- Interconnection. --- Invariance theorem. --- Isolated system. --- Iterative method. --- Jacobian matrix and determinant. --- Lagrangian (field theory). --- Lagrangian system. --- Lagrangian. --- Likelihood-ratio test. --- Limit cycle. --- Limit set. --- Linear function. --- Linearization. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Mass balance. --- Mathematical optimization. --- Melting. --- Mixture. --- Moment of inertia. --- Momentum. --- Monotonic function. --- Negative feedback. --- Nonlinear programming. --- Nonlinear system. --- Nonnegative matrix. --- Optimal control. --- Ordinary differential equation. --- Orthant. --- Parameter. --- Partial differential equation. --- Passive dynamics. --- Poincaré conjecture. --- Potential energy. --- Proof mass. --- Quantity. --- Rate function. --- Requirement. --- Robust control. --- Second law of thermodynamics. --- Semi-infinite. --- Small-gain theorem. --- Special case. --- Spectral radius. --- Stability theory. --- State space. --- Stiffness. --- Supply (economics). --- Telecommunication. --- Theorem. --- Transpose. --- Uncertainty. --- Uniform boundedness. --- Uniqueness. --- Vector field. --- Vibration. --- Zeroth (software). --- Zeroth law of thermodynamics.

Listing 1 - 3 of 3
Sort by