Narrow your search
Listing 1 - 5 of 5
Sort by

Dissertation
Travail de fin d'études et stage[BR]- Travail de fin d'études : Using passive cooling techniques to improve resilience to global warming of nearly zero-energy buildings[BR]- Stage d'insertion professionnelle
Authors: --- --- --- ---
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

With climate change, the energy consumption of buildings for cooling purposes is expected to rise, further enhancing global warming through the increase of greenhouse gas emissions. To break this vicious circle, it is essential to decrease the anthropogenic CO2 emissions by lessening the energy consumption in all sectors. Buildings are responsible for 40% of energy consumption in the European Union, according to the International Energy Agency (IEA). The urge to build more energy-efficient buildings resulted in the emergence of nearly zero-energy buildings (nZEB). However, the specifications the nZEB design should comply with might not be sufficient to prevent the risk of overheating in summer, hence the purchase of an active cooling system. 
Passive cooling techniques are investigated through a dynamic simulation of a nearly zero-energy dwelling. Their efficiency is assessed based on their ability to improve thermal comfort while limiting the increase in energy consumption. Thermal comfort is measured based on the theory of adaptative comfort which is the most relevant for a residential building. The passive cooling techniques can be combined to ensure the resilience of the building to global warming. It was found that the most efficient techniques are the ones relying on ventilative cooling. In Western Europe, day cooling should be combined with night cooling to reduce the overheating risk and improve thermal comfort by 39%. Solar protections and smart glazing also offer an efficient protection against overheating. They improve thermal comfort by respectively 34 and 22%. 
The effectiveness of the combined passive cooling techniques is studied over an extreme meteorological event, which is likely to occur by 2100 if nothing is done to prevent global warming. Twenty days of intense heat are studied to evaluate the resilience of a nZEB. It was found that the most efficient combination includes night cooling, thermochromic glazing and adiabatic cooling. Adiabatic cooling is particularly efficient during heat waves. Those techniques allow to decrease the indoor temperature by almost 10°C. However, occupants’ behaviour could have a negative impact on the cooling techniques efficiency.


Book
Assessing the Performance of Passive Houses in Mediterranean Climate Regions
Author:
ISBN: 3039289500 3039289497 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.


Book
Selected Papers from PRES 2018 : The 21st Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The depletion of natural energy resources provides evidential adverse impacts on world economy functionality. The strong requirement of a sustainable energy supply has escalated intensive research and the discovery of cleaner energy sources, as well as efficient energy management practices. In the context of a circular economy, this research not only targets the optimisation of resources utilisation at different stages but also emphasises the eco-design of products to extend production life spans. Based on this concept, this book discusses the roles of process integration approaches, renewable energy sources utilisation and design modifications in addressing the process energy and exergy efficiency improvement. The primary focus is to enhance the economic and environmental performance through process analysis, modelling and optimisation. The articles mainly show the contribution of each aspect: (a) design and numerical study for innovative energy-efficient technologies, (b) process integration—heat and power, (c) process energy efficiency or emission analysis, and (d) optimisation of renewable energy resources’ supply chain. The articles are based on the latest contribution of this journal’s Special Issues in the 21st conference entitled “Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES)”. This book is complemented with an editorial review to highlight the broader state-of-the-art development.

Keywords

Research & information: general --- particulate matter --- fine particles --- combustion particles --- nucleation --- particle growth --- data envelopment analysis --- energy efficiency --- food loss and waste --- life-cycle assessment --- welding residual stress --- welding deflection --- T-joint fillet weld --- preheat temperature --- interpass time --- finite element analysis --- water desalination --- water supply --- water shortage --- energy demand --- environmental impacts --- specific energy consumption --- cryogenic energy storage --- air liquefaction --- exergy analysis --- economic analysis --- exergoeconomic analysis --- heat exchanger network --- structural controllability --- structural observability --- operability --- network science --- sensor and actuator placement --- simplified methods --- design procedure --- convection section --- radiant section --- flow distribution --- heat flux distribution --- boiler --- solar collector network --- minimum number of solar collectors --- maximum operating time --- flexible operation --- district heating --- heat accumulation --- pipe --- numerical model --- Modelica language --- Julia language --- performance --- off-grid polygeneration --- micro-hydropower plant --- fuzzy optimization --- mixed-integer linear programming --- dual-turbine --- multi-objective --- heat exchanger network (HEN) --- synthesis --- optimization --- direct heat integration --- indirect heat integration --- piping --- pumping --- impinging jet --- dimple --- Nusselt number --- heat transfer --- heat exchanger --- flow boiling --- surface-enhanced tube --- heat transfer coefficient --- flow pattern --- total site heat integration --- heat recovery loop (HRL) --- heat storage --- Monte Carlo (MC) simulation --- data farming --- gasification --- biomass --- total solid particle --- trigeneration system --- process integration --- pinch analysis --- co-generation --- storage system --- trigeneration system cascade analysis --- energy conservation --- latent heat thermal energy storage --- phase change materials --- passive cooling --- bio-adsorbents --- chitosan microbeads --- nanoparticles --- anaerobic digestion --- biowaste --- life cycle assessment --- smart city --- waste collection --- P-Graph framework --- process network synthesis --- multi-periodic model --- sustainability --- co-firing --- wheat straw --- softwood --- bog peat --- pellets --- thermal decomposition --- combustion --- DC electric field --- computational fluid dynamics --- temperature contour --- cooling system --- mathematical optimization --- machine learning --- flexible control technology --- biomass co-firing --- biomass quality --- network optimization --- goal programming --- mixed integer nonlinear programming --- renewable energy sources --- energy-saving technologies


Book
Selected Papers from PRES 2018 : The 21st Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The depletion of natural energy resources provides evidential adverse impacts on world economy functionality. The strong requirement of a sustainable energy supply has escalated intensive research and the discovery of cleaner energy sources, as well as efficient energy management practices. In the context of a circular economy, this research not only targets the optimisation of resources utilisation at different stages but also emphasises the eco-design of products to extend production life spans. Based on this concept, this book discusses the roles of process integration approaches, renewable energy sources utilisation and design modifications in addressing the process energy and exergy efficiency improvement. The primary focus is to enhance the economic and environmental performance through process analysis, modelling and optimisation. The articles mainly show the contribution of each aspect: (a) design and numerical study for innovative energy-efficient technologies, (b) process integration—heat and power, (c) process energy efficiency or emission analysis, and (d) optimisation of renewable energy resources’ supply chain. The articles are based on the latest contribution of this journal’s Special Issues in the 21st conference entitled “Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES)”. This book is complemented with an editorial review to highlight the broader state-of-the-art development.

Keywords

Research & information: general --- particulate matter --- fine particles --- combustion particles --- nucleation --- particle growth --- data envelopment analysis --- energy efficiency --- food loss and waste --- life-cycle assessment --- welding residual stress --- welding deflection --- T-joint fillet weld --- preheat temperature --- interpass time --- finite element analysis --- water desalination --- water supply --- water shortage --- energy demand --- environmental impacts --- specific energy consumption --- cryogenic energy storage --- air liquefaction --- exergy analysis --- economic analysis --- exergoeconomic analysis --- heat exchanger network --- structural controllability --- structural observability --- operability --- network science --- sensor and actuator placement --- simplified methods --- design procedure --- convection section --- radiant section --- flow distribution --- heat flux distribution --- boiler --- solar collector network --- minimum number of solar collectors --- maximum operating time --- flexible operation --- district heating --- heat accumulation --- pipe --- numerical model --- Modelica language --- Julia language --- performance --- off-grid polygeneration --- micro-hydropower plant --- fuzzy optimization --- mixed-integer linear programming --- dual-turbine --- multi-objective --- heat exchanger network (HEN) --- synthesis --- optimization --- direct heat integration --- indirect heat integration --- piping --- pumping --- impinging jet --- dimple --- Nusselt number --- heat transfer --- heat exchanger --- flow boiling --- surface-enhanced tube --- heat transfer coefficient --- flow pattern --- total site heat integration --- heat recovery loop (HRL) --- heat storage --- Monte Carlo (MC) simulation --- data farming --- gasification --- biomass --- total solid particle --- trigeneration system --- process integration --- pinch analysis --- co-generation --- storage system --- trigeneration system cascade analysis --- energy conservation --- latent heat thermal energy storage --- phase change materials --- passive cooling --- bio-adsorbents --- chitosan microbeads --- nanoparticles --- anaerobic digestion --- biowaste --- life cycle assessment --- smart city --- waste collection --- P-Graph framework --- process network synthesis --- multi-periodic model --- sustainability --- co-firing --- wheat straw --- softwood --- bog peat --- pellets --- thermal decomposition --- combustion --- DC electric field --- computational fluid dynamics --- temperature contour --- cooling system --- mathematical optimization --- machine learning --- flexible control technology --- biomass co-firing --- biomass quality --- network optimization --- goal programming --- mixed integer nonlinear programming --- renewable energy sources --- energy-saving technologies


Book
Selected Papers from PRES 2018 : The 21st Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The depletion of natural energy resources provides evidential adverse impacts on world economy functionality. The strong requirement of a sustainable energy supply has escalated intensive research and the discovery of cleaner energy sources, as well as efficient energy management practices. In the context of a circular economy, this research not only targets the optimisation of resources utilisation at different stages but also emphasises the eco-design of products to extend production life spans. Based on this concept, this book discusses the roles of process integration approaches, renewable energy sources utilisation and design modifications in addressing the process energy and exergy efficiency improvement. The primary focus is to enhance the economic and environmental performance through process analysis, modelling and optimisation. The articles mainly show the contribution of each aspect: (a) design and numerical study for innovative energy-efficient technologies, (b) process integration—heat and power, (c) process energy efficiency or emission analysis, and (d) optimisation of renewable energy resources’ supply chain. The articles are based on the latest contribution of this journal’s Special Issues in the 21st conference entitled “Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES)”. This book is complemented with an editorial review to highlight the broader state-of-the-art development.

Keywords

particulate matter --- fine particles --- combustion particles --- nucleation --- particle growth --- data envelopment analysis --- energy efficiency --- food loss and waste --- life-cycle assessment --- welding residual stress --- welding deflection --- T-joint fillet weld --- preheat temperature --- interpass time --- finite element analysis --- water desalination --- water supply --- water shortage --- energy demand --- environmental impacts --- specific energy consumption --- cryogenic energy storage --- air liquefaction --- exergy analysis --- economic analysis --- exergoeconomic analysis --- heat exchanger network --- structural controllability --- structural observability --- operability --- network science --- sensor and actuator placement --- simplified methods --- design procedure --- convection section --- radiant section --- flow distribution --- heat flux distribution --- boiler --- solar collector network --- minimum number of solar collectors --- maximum operating time --- flexible operation --- district heating --- heat accumulation --- pipe --- numerical model --- Modelica language --- Julia language --- performance --- off-grid polygeneration --- micro-hydropower plant --- fuzzy optimization --- mixed-integer linear programming --- dual-turbine --- multi-objective --- heat exchanger network (HEN) --- synthesis --- optimization --- direct heat integration --- indirect heat integration --- piping --- pumping --- impinging jet --- dimple --- Nusselt number --- heat transfer --- heat exchanger --- flow boiling --- surface-enhanced tube --- heat transfer coefficient --- flow pattern --- total site heat integration --- heat recovery loop (HRL) --- heat storage --- Monte Carlo (MC) simulation --- data farming --- gasification --- biomass --- total solid particle --- trigeneration system --- process integration --- pinch analysis --- co-generation --- storage system --- trigeneration system cascade analysis --- energy conservation --- latent heat thermal energy storage --- phase change materials --- passive cooling --- bio-adsorbents --- chitosan microbeads --- nanoparticles --- anaerobic digestion --- biowaste --- life cycle assessment --- smart city --- waste collection --- P-Graph framework --- process network synthesis --- multi-periodic model --- sustainability --- co-firing --- wheat straw --- softwood --- bog peat --- pellets --- thermal decomposition --- combustion --- DC electric field --- computational fluid dynamics --- temperature contour --- cooling system --- mathematical optimization --- machine learning --- flexible control technology --- biomass co-firing --- biomass quality --- network optimization --- goal programming --- mixed integer nonlinear programming --- renewable energy sources --- energy-saving technologies

Listing 1 - 5 of 5
Sort by