Listing 1 - 8 of 8
Sort by

Map
Bathymetric map of Lake Pend Oreille and Pend Oreille River, Idaho
Authors: --- --- --- ---
Year: 1996 Publisher: Boise, Idaho : Denver, Colorado : U.S. Department of the Interior, U.S. Geological Survey, U.S. Geological Survey Information Services.

Loading...
Export citation

Choose an application

Bookmark

Abstract


Map
Bathymetric map of Lake Pend Oreille and Pend Oreille River, Idaho
Authors: --- --- --- ---
Year: 1996 Publisher: Boise, Idaho : Denver, Colorado : U.S. Department of the Interior, U.S. Geological Survey, U.S. Geological Survey Information Services.

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Bull trout in the Boundary System : managing connectivity and the feasibility of a reintroduction in the lower Pend Oreille River, northeastern Washington
Authors: --- --- --- --- --- et al.
Year: 2014 Publisher: Reston, Virginia : U.S. Department of the Interior, U.S. Geological Survey,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Bull trout in the Boundary System : managing connectivity and the feasibility of a reintroduction in the lower Pend Oreille River, northeastern Washington
Authors: --- --- --- --- --- et al.
Year: 2014 Publisher: Reston, Virginia : U.S. Department of the Interior, U.S. Geological Survey,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Water Quality in the Northern Rockies Intermontane Basins, Idaho, Montana, and Washington, 1999-2001
Authors: --- --- --- --- --- et al.
ISBN: 0607940670 9780607940671 Year: 2004 Volume: 1235 Publisher: Denver U.S. Geological Survey


Book
Remote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow. Accurate discharge measurements are critical for a range of applications including water supply, navigation, recreation, management of in-stream habitat, and the prediction and monitoring of floods and droughts. However, the traditional stream gage networks that provide such data are sparse and declining. Remote sensing represents an appealing alternative for obtaining streamflow information. Potential advantages include greater efficiency, expanded coverage, increased measurement frequency, lower cost and reduced risk to field personnel. In addition, remote sensing provides opportunities to examine long river segments with continuous coverage and high spatial resolution. To realize these benefits, research must focus on the remote measurement of flow velocity, channel geometry and their product: river discharge. This Special Issue fostered the development of novel methods for retrieving discharge and its components, and thus stimulated progress toward an operational capacity for streamflow monitoring. The papers herein address all aspects of the remote measurement of streamflow—estimation of flow velocity, bathymetry (water depth), and discharge—from various types of remotely sensed data acquired from a range of platforms: manned and unmanned aircraft, satellites, and ground-based non-contact sensors.


Book
Remote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow. Accurate discharge measurements are critical for a range of applications including water supply, navigation, recreation, management of in-stream habitat, and the prediction and monitoring of floods and droughts. However, the traditional stream gage networks that provide such data are sparse and declining. Remote sensing represents an appealing alternative for obtaining streamflow information. Potential advantages include greater efficiency, expanded coverage, increased measurement frequency, lower cost and reduced risk to field personnel. In addition, remote sensing provides opportunities to examine long river segments with continuous coverage and high spatial resolution. To realize these benefits, research must focus on the remote measurement of flow velocity, channel geometry and their product: river discharge. This Special Issue fostered the development of novel methods for retrieving discharge and its components, and thus stimulated progress toward an operational capacity for streamflow monitoring. The papers herein address all aspects of the remote measurement of streamflow—estimation of flow velocity, bathymetry (water depth), and discharge—from various types of remotely sensed data acquired from a range of platforms: manned and unmanned aircraft, satellites, and ground-based non-contact sensors.


Book
Remote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow. Accurate discharge measurements are critical for a range of applications including water supply, navigation, recreation, management of in-stream habitat, and the prediction and monitoring of floods and droughts. However, the traditional stream gage networks that provide such data are sparse and declining. Remote sensing represents an appealing alternative for obtaining streamflow information. Potential advantages include greater efficiency, expanded coverage, increased measurement frequency, lower cost and reduced risk to field personnel. In addition, remote sensing provides opportunities to examine long river segments with continuous coverage and high spatial resolution. To realize these benefits, research must focus on the remote measurement of flow velocity, channel geometry and their product: river discharge. This Special Issue fostered the development of novel methods for retrieving discharge and its components, and thus stimulated progress toward an operational capacity for streamflow monitoring. The papers herein address all aspects of the remote measurement of streamflow—estimation of flow velocity, bathymetry (water depth), and discharge—from various types of remotely sensed data acquired from a range of platforms: manned and unmanned aircraft, satellites, and ground-based non-contact sensors.

Keywords

Research & information: general --- estuary --- morphology --- rapid assessment --- bathymetry --- flow velocity --- salinity --- tool --- remotely-sensed imagery --- small unmanned aerial system (sUAS) --- river flow --- thermal infrared imagery --- particle image velocimetry --- lidar bathymetry --- fluvial --- geomorphology --- change detection --- remotely piloted aircraft system --- refraction correction --- structure-from-motion photogrammetry --- water surface elevation --- topographic error --- machine learning --- UAV LiDAR --- airborne laser bathymetry --- full waveform processing --- performance assessment --- high resolution hydro-mapping --- remote sensing --- rivers --- discharge --- hydrology --- modelling --- ungauged basins --- Alaska --- river --- PIV --- large-scale particle image velocimetry --- LSPIV --- surface velocity --- river discharge --- Doppler radar --- pulsed radar --- probability concept --- water temperature --- salmonids --- Pend Oreille River --- thermal infrared (TIR) --- acoustic Doppler current profiler (ADCP) --- channel bathymetry --- cold-water refuge --- dam --- flooding --- high-water marks (HWMs) --- small unmanned aircraft systems (sUAS) --- drone --- photogrammetry --- hydraulic modeling --- aerial photography --- surveying --- inundation --- Landsat --- streamflow --- flow frequency --- satellite revisit time --- flow regime --- estuary --- morphology --- rapid assessment --- bathymetry --- flow velocity --- salinity --- tool --- remotely-sensed imagery --- small unmanned aerial system (sUAS) --- river flow --- thermal infrared imagery --- particle image velocimetry --- lidar bathymetry --- fluvial --- geomorphology --- change detection --- remotely piloted aircraft system --- refraction correction --- structure-from-motion photogrammetry --- water surface elevation --- topographic error --- machine learning --- UAV LiDAR --- airborne laser bathymetry --- full waveform processing --- performance assessment --- high resolution hydro-mapping --- remote sensing --- rivers --- discharge --- hydrology --- modelling --- ungauged basins --- Alaska --- river --- PIV --- large-scale particle image velocimetry --- LSPIV --- surface velocity --- river discharge --- Doppler radar --- pulsed radar --- probability concept --- water temperature --- salmonids --- Pend Oreille River --- thermal infrared (TIR) --- acoustic Doppler current profiler (ADCP) --- channel bathymetry --- cold-water refuge --- dam --- flooding --- high-water marks (HWMs) --- small unmanned aircraft systems (sUAS) --- drone --- photogrammetry --- hydraulic modeling --- aerial photography --- surveying --- inundation --- Landsat --- streamflow --- flow frequency --- satellite revisit time --- flow regime

Listing 1 - 8 of 8
Sort by