Narrow your search
Listing 1 - 10 of 23 << page
of 3
>>
Sort by

Book
Über die Berechnung orthogonal anisotroper Platten mit exzentrisch angeordneten Rippen mit Hilfe der Singularitätenmethode
Author:
Year: 1971 Publisher: Technische Hochschule Wien : Institut fur stahlbau,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Contribution à l'étude des écoulements internes et instationnaires par la méthode des singularités à répartition discrétisée
Author:
Year: 1979 Publisher: Paris : Université Pierre et Marie Curie [Paris VI],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Multi-parameter singular integrals
Author:
ISBN: 1400852757 Year: 2014 Publisher: Princeton, New Jersey ; Oxfordshire, England : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields.


Book
Pseudodifferential and Singular Integral Operators
Author:
ISBN: 3110250314 9783110250312 9783110250305 Year: 2011 Publisher: Berlin De Gruyter

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis.

Wavelets : Calderón-Zygmund and multilinear operators
Authors: --- ---
ISBN: 0521420016 9780521420013 Year: 1997 Volume: 48 Publisher: Cambridge Cambridge University press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Now in paperback, this remains one of the classic expositions of the theory of wavelets from two of the subject's leading experts. In this volume the theory of paradifferential operators and the Cauchy kernel on Lipschitz curves are discussed with the emphasis firmly on their connection with wavelet bases. Sparse matrix representations of these operators can be given in terms of wavelet bases which have important applications in image processing and numerical analysis. This method is now widely studied and can be used to tackle a wide variety of problems arising in science and engineering. Put simply, this is an essential purchase for anyone researching the theory of wavelets.


Book
Multi-Layer Potentials and Boundary Problems : for Higher-Order Elliptic Systems in Lipschitz Domains
Authors: ---
ISBN: 364232665X 3642326668 Year: 2013 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.

Keywords

Boundary value problems --- Differential equations, Elliptic --- Lipschitz spaces --- Smoothness of functions --- Calderâon-Zygmund operator --- Mathematics --- Civil & Environmental Engineering --- Physical Sciences & Mathematics --- Engineering & Applied Sciences --- Calculus --- Operations Research --- Mathematical Theory --- Smooth functions --- Hölder spaces --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Boundary conditions (Differential equations) --- Mathematics. --- Fourier analysis. --- Integral equations. --- Partial differential equations. --- Potential theory (Mathematics). --- Potential Theory. --- Partial Differential Equations. --- Integral Equations. --- Fourier Analysis. --- Boundary value problems. --- Differential equations, Elliptic. --- Lipschitz spaces. --- Smoothness of functions. --- Calderón-Zygmund operator. --- Calderón-Zygmund singular integral operator --- Mikhlin-Calderon-Zygmund operator --- Operator, Calderón-Zygmund --- Singular integral operator, Calderón-Zygmund --- Zygmund-Calderón operator --- Linear operators --- Functions --- Function spaces --- Differential equations, Linear --- Differential equations, Partial --- Differential equations --- Functions of complex variables --- Mathematical physics --- Initial value problems --- Differential equations, partial. --- Analysis, Fourier --- Mathematical analysis --- Equations, Integral --- Functional equations --- Functional analysis --- Partial differential equations --- Green's operators --- Green's theorem --- Potential functions (Mathematics) --- Potential, Theory of --- Mechanics


Book
Calculus on Heisenberg Manifolds. (AM-119), Volume 119
Authors: ---
ISBN: 1400882397 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,


Book
Numerical Methods
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Numerical methods are a specific form of mathematics that involve creating and use of algorithms to map out the mathematical core of a practical problem. Numerical methods naturally find application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses of numerical methods include approximation, simulation, and estimation, and there is almost no scientific field in which numerical methods do not find a use. Results communicated here include topics ranging from statistics (Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions) and Statistical software packages (dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS) to new approaches for numerical solutions (Exact Solutions to the Maxmin Problem max‖Ax‖ Subject to ‖Bx‖≤1; On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems; Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method; On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence; Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations) to the use of wavelets (Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron) and methods for visualization (A Simple Method for Network Visualization).


Book
Numerical Methods
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Numerical methods are a specific form of mathematics that involve creating and use of algorithms to map out the mathematical core of a practical problem. Numerical methods naturally find application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses of numerical methods include approximation, simulation, and estimation, and there is almost no scientific field in which numerical methods do not find a use. Results communicated here include topics ranging from statistics (Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions) and Statistical software packages (dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS) to new approaches for numerical solutions (Exact Solutions to the Maxmin Problem max‖Ax‖ Subject to ‖Bx‖≤1; On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems; Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method; On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence; Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations) to the use of wavelets (Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron) and methods for visualization (A Simple Method for Network Visualization).

Listing 1 - 10 of 23 << page
of 3
>>
Sort by