Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULB (7)

ULiège (7)

VIVES (7)

More...

Resource type

book (15)


Language

English (15)


Year
From To Submit

2022 (4)

2021 (3)

2020 (6)

2019 (2)

Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Book
Precision Medicine in Solid Tumors
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the era of precision medicine, the use of molecularly targeted therapies in selected patients has led to a paradigm change in cancer treatment. Multiple studies have demonstrated the benefits of therapies that are chosen based on the molecular profile of the tumor and also from the liquid biopsy. With genomics' increasing ability, a routine transcriptomics analysis of advanced/metastatic cancers is now feasible in most cancer hospitals, including community cancer centers. This is an unprecedented shift in the management of cancers irrespective of their organ types, which not only improved the outcome but also opened several new avenues in research and practice, such as immune-check-point inhibitors, tumor-TME co-evolution in the development of resistance, longitudinal liquid biopsies, biomarkers screening and the management of electronic medical records.This book brings together these crucial areas of investigation. The research presented here attempts to address the current issues to provoke thoughts for the future. The future of precision medicine will have to embrace a shift from in vitro, in vivo/PDX models for the mechanistic study to a more functional test based on the scientific interrogation of genomic data, in the form of functional precision medicine. We will also have to combat the element of noise in the multitudes of data and impart the regulatory structure to make judicious use of the data. The expectations for functional precision medicine are high. We aspire to witness a tremendous improvement in patient outcomes, from better to best, down the road that will match the clinical guidelines.

Keywords

Medicine --- Oncology --- pediatric tumors --- tumor mutational burden --- TMB --- whole-exome sequencing --- gene panel sequencing --- immune checkpoint inhibitors --- glioblastoma prognosis --- overall survival --- extent of resection --- random forest --- Decision tree --- personalized precision oncology --- circulating free DNA --- liquid biopsy --- epidermal growth factor receptor --- tyrosine kinase inhibitor --- osimertinib --- comprehensive genomic profiling --- molecular genotyping --- intratumor heterogeneity --- multiple biopsies --- tumor evolution --- clonality classification --- strategic therapeutic intervention --- thymoma --- driver mutation --- sequencing --- molecular barcoding --- EGFR mutation --- EGFR-TKI --- cfDNA --- NGS --- digital enrichment --- next-generation sequencing --- solid cancer --- universal health-care system --- precision medicine --- presumed germline findings --- clinical guideline --- non-small cell lung cancer --- outcome --- adjuvant chemotherapy --- anaplastic lymphoma receptor tyrosine kinase --- HNSCC --- ctDNA --- tDNA --- DDR genes --- PARP inhibitors --- new drug development --- next-generation sequencing (NGS) --- open data --- regulatory reform --- tumor profiling test --- triple-negative breast cancer (TNBC) --- breast cancer --- targeted therapy --- TNBC subtypes --- immunotherapy --- cancer --- screening --- smoking --- electronic records --- PD-L1 --- cancer-associated fibroblasts --- resistance --- chemotherapy --- CTC --- immunocytochemistry --- parallel double-detection --- laboratory-friendly --- n/a


Book
Precision Medicine in Solid Tumors
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the era of precision medicine, the use of molecularly targeted therapies in selected patients has led to a paradigm change in cancer treatment. Multiple studies have demonstrated the benefits of therapies that are chosen based on the molecular profile of the tumor and also from the liquid biopsy. With genomics' increasing ability, a routine transcriptomics analysis of advanced/metastatic cancers is now feasible in most cancer hospitals, including community cancer centers. This is an unprecedented shift in the management of cancers irrespective of their organ types, which not only improved the outcome but also opened several new avenues in research and practice, such as immune-check-point inhibitors, tumor-TME co-evolution in the development of resistance, longitudinal liquid biopsies, biomarkers screening and the management of electronic medical records.This book brings together these crucial areas of investigation. The research presented here attempts to address the current issues to provoke thoughts for the future. The future of precision medicine will have to embrace a shift from in vitro, in vivo/PDX models for the mechanistic study to a more functional test based on the scientific interrogation of genomic data, in the form of functional precision medicine. We will also have to combat the element of noise in the multitudes of data and impart the regulatory structure to make judicious use of the data. The expectations for functional precision medicine are high. We aspire to witness a tremendous improvement in patient outcomes, from better to best, down the road that will match the clinical guidelines.

Keywords

Medicine --- Oncology --- pediatric tumors --- tumor mutational burden --- TMB --- whole-exome sequencing --- gene panel sequencing --- immune checkpoint inhibitors --- glioblastoma prognosis --- overall survival --- extent of resection --- random forest --- Decision tree --- personalized precision oncology --- circulating free DNA --- liquid biopsy --- epidermal growth factor receptor --- tyrosine kinase inhibitor --- osimertinib --- comprehensive genomic profiling --- molecular genotyping --- intratumor heterogeneity --- multiple biopsies --- tumor evolution --- clonality classification --- strategic therapeutic intervention --- thymoma --- driver mutation --- sequencing --- molecular barcoding --- EGFR mutation --- EGFR-TKI --- cfDNA --- NGS --- digital enrichment --- next-generation sequencing --- solid cancer --- universal health-care system --- precision medicine --- presumed germline findings --- clinical guideline --- non-small cell lung cancer --- outcome --- adjuvant chemotherapy --- anaplastic lymphoma receptor tyrosine kinase --- HNSCC --- ctDNA --- tDNA --- DDR genes --- PARP inhibitors --- new drug development --- next-generation sequencing (NGS) --- open data --- regulatory reform --- tumor profiling test --- triple-negative breast cancer (TNBC) --- breast cancer --- targeted therapy --- TNBC subtypes --- immunotherapy --- cancer --- screening --- smoking --- electronic records --- PD-L1 --- cancer-associated fibroblasts --- resistance --- chemotherapy --- CTC --- immunocytochemistry --- parallel double-detection --- laboratory-friendly --- n/a


Book
Precision Medicine in Solid Tumors
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the era of precision medicine, the use of molecularly targeted therapies in selected patients has led to a paradigm change in cancer treatment. Multiple studies have demonstrated the benefits of therapies that are chosen based on the molecular profile of the tumor and also from the liquid biopsy. With genomics' increasing ability, a routine transcriptomics analysis of advanced/metastatic cancers is now feasible in most cancer hospitals, including community cancer centers. This is an unprecedented shift in the management of cancers irrespective of their organ types, which not only improved the outcome but also opened several new avenues in research and practice, such as immune-check-point inhibitors, tumor-TME co-evolution in the development of resistance, longitudinal liquid biopsies, biomarkers screening and the management of electronic medical records.This book brings together these crucial areas of investigation. The research presented here attempts to address the current issues to provoke thoughts for the future. The future of precision medicine will have to embrace a shift from in vitro, in vivo/PDX models for the mechanistic study to a more functional test based on the scientific interrogation of genomic data, in the form of functional precision medicine. We will also have to combat the element of noise in the multitudes of data and impart the regulatory structure to make judicious use of the data. The expectations for functional precision medicine are high. We aspire to witness a tremendous improvement in patient outcomes, from better to best, down the road that will match the clinical guidelines.

Keywords

pediatric tumors --- tumor mutational burden --- TMB --- whole-exome sequencing --- gene panel sequencing --- immune checkpoint inhibitors --- glioblastoma prognosis --- overall survival --- extent of resection --- random forest --- Decision tree --- personalized precision oncology --- circulating free DNA --- liquid biopsy --- epidermal growth factor receptor --- tyrosine kinase inhibitor --- osimertinib --- comprehensive genomic profiling --- molecular genotyping --- intratumor heterogeneity --- multiple biopsies --- tumor evolution --- clonality classification --- strategic therapeutic intervention --- thymoma --- driver mutation --- sequencing --- molecular barcoding --- EGFR mutation --- EGFR-TKI --- cfDNA --- NGS --- digital enrichment --- next-generation sequencing --- solid cancer --- universal health-care system --- precision medicine --- presumed germline findings --- clinical guideline --- non-small cell lung cancer --- outcome --- adjuvant chemotherapy --- anaplastic lymphoma receptor tyrosine kinase --- HNSCC --- ctDNA --- tDNA --- DDR genes --- PARP inhibitors --- new drug development --- next-generation sequencing (NGS) --- open data --- regulatory reform --- tumor profiling test --- triple-negative breast cancer (TNBC) --- breast cancer --- targeted therapy --- TNBC subtypes --- immunotherapy --- cancer --- screening --- smoking --- electronic records --- PD-L1 --- cancer-associated fibroblasts --- resistance --- chemotherapy --- CTC --- immunocytochemistry --- parallel double-detection --- laboratory-friendly --- n/a


Book
mTOR Signaling in Metabolism and Cancer
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a central regulator for human physiological activity. Deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The papers published in this Special Issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. The findings highlight that targeting mTOR pathway is a promising strategy to fight against certain human diseases.


Book
mTOR Signaling in Metabolism and Cancer
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a central regulator for human physiological activity. Deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The papers published in this Special Issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. The findings highlight that targeting mTOR pathway is a promising strategy to fight against certain human diseases.


Book
mTOR Signaling in Metabolism and Cancer
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a central regulator for human physiological activity. Deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The papers published in this Special Issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. The findings highlight that targeting mTOR pathway is a promising strategy to fight against certain human diseases.


Book
Towards New Promising Discoveries for Lung Cancer Patients: A Selection of Papers from the First Joint Meeting on Lung Cancer of the FHU OncoAge (Nice, France) and the MD Anderson Cancer Center (Houston, TX, USA)
Authors: --- ---
ISBN: 3039214527 3039214519 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Cancers (Basel) is mainly dedicated to selecting papers from the talks given during the first Joint Meeting on Lung Cancer (JMLC) between the MD Anderson Cancer Center (Houston, Texas USA) and the Hospital University Federation (HUF) OncoAge (University Côte d’Azur, Nice, France) (Nice, September 2018). The central theme of JMLC is to discuss new advances and exchange ideas regarding lung cancer. Notably, the talks covered different topics on new therapeutic strategies (targeted therapy and immuno-oncology), molecular and cellular biology, biomarkers, and the epidemiology of lung cancer. Special attention was also given to lung cancer in elderly patients. The articles published in this Special Issue covered subjects such as the assessment of new biomarkers and new approaches for the early detection of lung cancer, epidemiological data, and emphasized a place for the newly characterized cellular pathways in lung cancer, which opens room for therapeutic perspectives for lung cancer patients.


Book
New Aspects of Cancer Stem Cell Biology : Implications for Innovative Therapies
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.


Book
New Aspects of Cancer Stem Cell Biology : Implications for Innovative Therapies
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.


Book
New Aspects of Cancer Stem Cell Biology : Implications for Innovative Therapies
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.

Listing 1 - 10 of 15 << page
of 2
>>
Sort by