Narrow your search

Library

KU Leuven (61)

ULiège (26)

VUB (24)

UAntwerpen (23)

UCLouvain (19)

UGent (18)

UHasselt (13)

LUCA School of Arts (12)

Odisee (12)

Thomas More Kempen (12)

More...

Resource type

book (61)


Language

English (61)


Year
From To Submit

2021 (1)

2017 (1)

2016 (20)

2015 (4)

2014 (1)

More...
Listing 1 - 10 of 61 << page
of 7
>>
Sort by

Book
Composition Methods in Homotopy Groups of Spheres. (AM-49), Volume 49
Author:
ISBN: 1400882621 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Composition Methods in Homotopy Groups of Spheres. (AM-49), Volume 49, will be forthcoming.


Book
Young measures and compactness in measure spaces
Authors: ---
ISBN: 128385791X 3110280515 3110280523 9783110280517 9783110280524 3110276402 9783110276404 9781283857918 Year: 2012 Publisher: Berlin ; Boston : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, technological progress created a great need for complex mathematical models. Many practical problems can be formulated using optimization theory and they hope to obtain an optimal solution. In most cases, such optimal solution can not be found. So, non-convex optimization problems (arising, e.g., in variational calculus, optimal control, nonlinear evolutions equations) may not possess a classical minimizer because the minimizing sequences have typically rapid oscillations. This behavior requires a relaxation of notion of solution for such problems; often we can obtain such a relaxation by means of Young measures. This monograph is a self-contained book which gathers all theoretical aspects related to the defining of Young measures (measurability, disintegration, stable convergence, compactness), a book which is also a useful tool for those interested in theoretical foundations of the measure theory. It provides a complete set of classical and recent compactness results in measure and function spaces. The book is organized in three chapters: The first chapter covers background material on measure theory in abstract frame. In the second chapter the measure theory on topological spaces is presented. Compactness results from the first two chapters are used to study Young measures in the third chapter. All results are accompanied by full demonstrations and for many of these results different proofs are given. All statements are fully justified and proved.


Book
Topics in Topology. (AM-10), Volume 10
Author:
ISBN: 1400882338 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solomon Lefschetz pioneered the field of topology--the study of the properties of many�sided figures and their ability to deform, twist, and stretch without changing their shape. According to Lefschetz, "If it's just turning the crank, it's algebra, but if it's got an idea in it, it's topology." The very word topology comes from the title of an earlier Lefschetz monograph published in 1920. In Topics in Topology Lefschetz developed a more in-depth introduction to the field, providing authoritative explanations of what would today be considered the basic tools of algebraic topology. Lefschetz moved to the United States from France in 1905 at the age of twenty-one to find employment opportunities not available to him as a Jew in France. He worked at Westinghouse Electric Company in Pittsburgh and there suffered a horrible laboratory accident, losing both hands and forearms. He continued to work for Westinghouse, teaching mathematics, and went on to earn a Ph.D. and to pursue an academic career in mathematics. When he joined the mathematics faculty at Princeton University, he became one of its first Jewish faculty members in any discipline. He was immensely popular, and his memory continues to elicit admiring anecdotes. Editor of Princeton University Press's Annals of Mathematics from 1928 to 1958, Lefschetz built it into a world-class scholarly journal. He published another book, Lectures on Differential Equations, with Princeton in 1946.


Book
Higher topos theory
Author:
ISBN: 9780691140490 9780691140483 0691140480 0691140499 9786612644955 1400830559 1282644955 9781400830558 9781282644953 6612644958 Year: 2009 Volume: 170 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.

Keywords

Algebraic geometry --- Topology --- Toposes --- Categories (Mathematics) --- Categories (Mathematics). --- Toposes. --- Algebra --- Mathematics --- Physical Sciences & Mathematics --- Category theory (Mathematics) --- Topoi (Mathematics) --- Algebra, Homological --- Algebra, Universal --- Group theory --- Logic, Symbolic and mathematical --- Functor theory --- Adjoint functors. --- Associative property. --- Base change map. --- Base change. --- CW complex. --- Canonical map. --- Cartesian product. --- Category of sets. --- Category theory. --- Coequalizer. --- Cofinality. --- Coherence theorem. --- Cohomology. --- Cokernel. --- Commutative property. --- Continuous function (set theory). --- Contractible space. --- Coproduct. --- Corollary. --- Derived category. --- Diagonal functor. --- Diagram (category theory). --- Dimension theory (algebra). --- Dimension theory. --- Dimension. --- Enriched category. --- Epimorphism. --- Equivalence class. --- Equivalence relation. --- Existence theorem. --- Existential quantification. --- Factorization system. --- Functor category. --- Functor. --- Fundamental group. --- Grothendieck topology. --- Grothendieck universe. --- Group homomorphism. --- Groupoid. --- Heyting algebra. --- Higher Topos Theory. --- Higher category theory. --- Homotopy category. --- Homotopy colimit. --- Homotopy group. --- Homotopy. --- I0. --- Inclusion map. --- Inductive dimension. --- Initial and terminal objects. --- Inverse limit. --- Isomorphism class. --- Kan extension. --- Limit (category theory). --- Localization of a category. --- Maximal element. --- Metric space. --- Model category. --- Monoidal category. --- Monoidal functor. --- Monomorphism. --- Monotonic function. --- Morphism. --- Natural transformation. --- Nisnevich topology. --- Noetherian topological space. --- Noetherian. --- O-minimal theory. --- Open set. --- Power series. --- Presheaf (category theory). --- Prime number. --- Pullback (category theory). --- Pushout (category theory). --- Quillen adjunction. --- Quotient by an equivalence relation. --- Regular cardinal. --- Retract. --- Right inverse. --- Sheaf (mathematics). --- Sheaf cohomology. --- Simplicial category. --- Simplicial set. --- Special case. --- Subcategory. --- Subset. --- Surjective function. --- Tensor product. --- Theorem. --- Topological space. --- Topology. --- Topos. --- Total order. --- Transitive relation. --- Universal property. --- Upper and lower bounds. --- Weak equivalence (homotopy theory). --- Yoneda lemma. --- Zariski topology. --- Zorn's lemma.


Book
Non-archimedean tame topology and stably dominated types
Authors: ---
ISBN: 1400881226 9781400881222 9780691161693 9780691161686 0691161682 9780691161686 0691161690 9780691161693 Year: 2016 Publisher: Princeton, New Jersey ; Oxford, [England] : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections.

Keywords

Tame algebras. --- Algebras, Tame --- Associative algebras --- Abhyankar property. --- Berkovich space. --- Galois orbit. --- Riemann-Roch. --- Zariski dense open set. --- Zariski open subset. --- Zariski topology. --- algebraic geometry. --- algebraic variety. --- algebraically closed valued field. --- analytic geometry. --- birational invariant. --- canonical extension. --- connectedness. --- continuity criteria. --- continuous definable map. --- continuous map. --- curve fibration. --- definable compactness. --- definable function. --- definable homotopy type. --- definable set. --- definable space. --- definable subset. --- definable topological space. --- definable topology. --- definable type. --- definably compact set. --- deformation retraction. --- finite simplicial complex. --- finite-dimensional vector space. --- forward-branching point. --- fundamental space. --- g-continuity. --- g-continuous. --- g-open set. --- germ. --- good metric. --- homotopy equivalence. --- homotopy. --- imaginary base set. --- ind-definable set. --- ind-definable subset. --- inflation homotopy. --- inflation. --- inverse limit. --- iso-definability. --- iso-definable set. --- iso-definable subset. --- iterated place. --- linear topology. --- main theorem. --- model theory. --- morphism. --- natural functor. --- non-archimedean geometry. --- non-archimedean tame topology. --- o-minimal formulation. --- o-minimality. --- orthogonality. --- path. --- pro-definable bijection. --- pro-definable map. --- pro-definable set. --- pro-definable subset. --- pseudo-Galois covering. --- real numbers. --- relatively compact set. --- residue field extension. --- retraction. --- schematic distance. --- semi-lattice. --- sequence. --- smooth case. --- smoothness. --- stability theory. --- stable completion. --- stable domination. --- stably dominated point. --- stably dominated type. --- stably dominated. --- strong stability. --- substructure. --- topological embedding. --- topological space. --- topological structure. --- topology. --- transcendence degree. --- v-continuity. --- valued field. --- Γ-internal set. --- Γ-internal space. --- Γ-internal subset.


Book
Surface Area. (AM-35), Volume 35
Author:
ISBN: 140088232X Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Surface Area. (AM-35), Volume 35, will be forthcoming.

Keywords

Surfaces. --- Absolute continuity. --- Addition. --- Admissible set. --- Arc length. --- Axiom. --- Axiomatic system. --- Bearing (navigation). --- Bounded variation. --- Calculus of variations. --- Circumference. --- Compact space. --- Complex analysis. --- Concentric. --- Connected space. --- Continuous function (set theory). --- Continuous function. --- Corollary. --- Countable set. --- Covering set. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differential geometry. --- Direct proof. --- Dirichlet integral. --- Disjoint sets. --- Empty set. --- Equation. --- Equicontinuity. --- Existence theorem. --- Existential quantification. --- Function (mathematics). --- Functional analysis. --- Geometry. --- Hausdorff measure. --- Homeomorphism. --- Homotopy. --- Infimum and supremum. --- Integral geometry. --- Intersection number (graph theory). --- Interval (mathematics). --- Iterative method. --- Jacobian. --- Lebesgue integration. --- Lebesgue measure. --- Limit (mathematics). --- Limit point. --- Limit superior and limit inferior. --- Linearity. --- Line–line intersection. --- Locally compact space. --- Mathematician. --- Mathematics. --- Measure (mathematics). --- Metric space. --- Morphism. --- Natural number. --- Nonparametric statistics. --- Orientability. --- Parameter. --- Parametric equation. --- Parametric surface. --- Partial derivative. --- Potential theory. --- Radon–Nikodym theorem. --- Representation theorem. --- Representation theory. --- Right angle. --- Semi-continuity. --- Set function. --- Set theory. --- Sign (mathematics). --- Smoothness. --- Space-filling curve. --- Subset. --- Summation. --- Surface area. --- Tangent space. --- Theorem. --- Topological space. --- Topology. --- Total order. --- Total variation. --- Uniform convergence. --- Unit square.


Book
Generalized Feynman Amplitudes. (AM-62), Volume 62
Author:
ISBN: 1400881862 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains a valuable discussion of renormalization through the addition of counterterms to the Lagrangian, giving the first complete proof of the cancellation of all divergences in an arbitrary interaction. The author also introduces a new method of renormalizing an arbitrary Feynman amplitude, a method that is simpler than previous approaches and can be used to study the renormalized perturbation series in quantum field theory.

Keywords

Mathematical physics. --- Quantum field theory. --- Addition. --- Adjoint. --- Amplitude. --- Analytic continuation. --- Analytic function. --- Antiparticle. --- C-number. --- Calculation. --- Change of variables. --- Classical electromagnetism. --- Coefficient. --- Commutative property. --- Compact space. --- Complex analysis. --- Complex number. --- Connectivity (graph theory). --- Constant term. --- Convolution. --- Derivative. --- Diagram (category theory). --- Differentiable function. --- Distribution (mathematics). --- Equation. --- Estimation. --- Explicit formulae (L-function). --- Fermion. --- Fock space. --- Formal power series. --- Fourier transform. --- Free field. --- Gauge theory. --- Graph theory. --- Hilbert space. --- Incidence matrix. --- Interaction picture. --- Invertible matrix. --- Irreducibility (mathematics). --- Isolated singularity. --- Lagrangian (field theory). --- Laurent series. --- Mathematical induction. --- Mathematics. --- Momentum. --- Monomial. --- Multiple integral. --- National Science Foundation. --- Notation. --- Parameter. --- Path integral formulation. --- Permutation. --- Polynomial. --- Power series. --- Probability. --- Propagator. --- Quadratic form. --- Quantity. --- Remainder. --- Renormalization. --- Requirement. --- S-matrix. --- Scattering amplitude. --- Scientific notation. --- Second quantization. --- Several complex variables. --- Simple extension. --- Special case. --- Subset. --- Subtraction. --- Suggestion. --- Summation. --- Taylor series. --- Tensor product. --- Theorem. --- Theory. --- Topological space. --- Translational symmetry. --- Tree (data structure). --- Uniform convergence. --- Vacuum expectation value. --- Vacuum state. --- Vacuum. --- Variable (mathematics). --- Vector field. --- Vector potential. --- Wick's theorem. --- Z0.


Book
Symmetric Markov processes, time change, and boundary theory
Authors: ---
ISBN: 1283290944 9786613290946 Year: 2011 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet forms. In a detailed and accessible manner, Zhen-Qing Chen and Masatoshi Fukushima cover the essential elements and applications of the theory of symmetric Markov processes, including recurrence/transience criteria, probabilistic potential theory, additive functional theory, and time change theory. The authors develop the theory in a general framework of symmetric quasi-regular Dirichlet forms in a unified manner with that of regular Dirichlet forms, emphasizing the role of extended Dirichlet spaces and the rich interplay between the probabilistic and analytic aspects of the theory. Chen and Fukushima then address the latest advances in the theory, presented here for the first time in any book. Topics include the characterization of time-changed Markov processes in terms of Douglas integrals and a systematic account of reflected Dirichlet spaces, and the important roles such advances play in the boundary theory of symmetric Markov processes. This volume is an ideal resource for researchers and practitioners, and can also serve as a textbook for advanced graduate students. It includes examples, appendixes, and exercises with solutions.

Keywords

Markov processes. --- Boundary value problems. --- Dirichlet problem. --- Beurling-Deny decomposition. --- Beurling-Deny formula. --- Brownian motions. --- Dirichlet forms. --- Dirichlet spaces. --- Douglas integrals. --- Feller measures. --- Hausdorff topological space. --- Markovian symmetric operators. --- Silverstein extension. --- additive functional theory. --- additive functionals. --- analytic concepts. --- analytic potential theory. --- boundary theory. --- countable boundary. --- decompositions. --- energy functional. --- extended Dirichlet spaces. --- fine properties. --- harmonic functions. --- harmonicity. --- hitting distributions. --- irreducibility. --- lateral condition. --- local properties. --- m-tight special Borel. --- many-point extensions. --- one-point extensions. --- part processes. --- path behavior. --- perturbed Dirichlet forms. --- positive continuous additive functionals. --- probabilistic derivation. --- probabilistic potential theory. --- quasi properties. --- quasi-homeomorphism. --- quasi-regular Dirichlet forms. --- recurrence. --- reflected Dirichlet spaces. --- reflecting Brownian motions. --- reflecting extensions. --- regular Dirichlet forms. --- regular recurrent Dirichlet forms. --- smooth measures. --- symmetric Hunt processes. --- symmetric Markov processes. --- symmetric Markovian semigroups. --- terminal random variables. --- time change theory. --- time changes. --- time-changed process. --- transience. --- transient regular Dirichlet forms.

Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56
Author:
ISBN: 0691079919 1400882036 9780691079912 Year: 2016 Volume: 56 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56, will be forthcoming.

Keywords

Topology --- 512 --- Algebra --- 512 Algebra --- Knot theory. --- Knots (Topology) --- Low-dimensional topology --- Abelian group. --- Alexander duality. --- Alexander polynomial. --- Algebraic theory. --- Algorithm. --- Analytic continuation. --- Associative property. --- Automorphism. --- Axiom. --- Bijection. --- Binary relation. --- Calculation. --- Central series. --- Characterization (mathematics). --- Cobordism. --- Coefficient. --- Cohomology. --- Combinatorics. --- Commutator subgroup. --- Complete theory. --- Computation. --- Conjugacy class. --- Conjugate element (field theory). --- Connected space. --- Connectedness. --- Coprime integers. --- Coset. --- Covering space. --- Curve. --- Cyclic group. --- Dehn's lemma. --- Determinant. --- Diagonalization. --- Diagram (category theory). --- Dimension. --- Direct product. --- Equivalence class. --- Equivalence relation. --- Euclidean space. --- Euler characteristic. --- Existential quantification. --- Fiber bundle. --- Finite group. --- Finitely generated module. --- Frattini subgroup. --- Free abelian group. --- Fundamental group. --- Geometry. --- Group ring. --- Group theory. --- Group with operators. --- Hausdorff space. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Homotopy group. --- Homotopy. --- Identity matrix. --- Inner automorphism. --- Interior (topology). --- Intersection number (graph theory). --- Knot group. --- Linear combination. --- Manifold. --- Mathematical induction. --- Monomorphism. --- Morphism. --- Morse theory. --- Natural transformation. --- Non-abelian group. --- Normal subgroup. --- Orientability. --- Permutation. --- Polynomial. --- Presentation of a group. --- Principal ideal domain. --- Principal ideal. --- Root of unity. --- Semigroup. --- Simplicial complex. --- Simply connected space. --- Special case. --- Square matrix. --- Subgroup. --- Subset. --- Summation. --- Theorem. --- Three-dimensional space (mathematics). --- Topological space. --- Topology. --- Torus knot. --- Transfinite number. --- Trefoil knot. --- Trichotomy (mathematics). --- Trivial group. --- Triviality (mathematics). --- Two-dimensional space. --- Unit vector. --- Wreath product.

Advances in the theory of Riemann surfaces : proceedings of the 1969 Stony Brook Conference
Authors: --- ---
ISBN: 069108081X 9781400822492 1400822491 9780691080819 Year: 1971 Volume: 66 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Intended for researchers in Riemann surfaces, this volume summarizes a significant portion of the work done in the field during the years 1966 to 1971.

Keywords

Riemann surfaces --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Surfaces, Riemann --- Functions --- Congresses --- Differential geometry. Global analysis --- RIEMANN SURFACES --- congresses --- Congresses. --- MATHEMATICS / Calculus. --- Affine space. --- Algebraic function field. --- Algebraic structure. --- Analytic continuation. --- Analytic function. --- Analytic set. --- Automorphic form. --- Automorphic function. --- Automorphism. --- Beltrami equation. --- Bernhard Riemann. --- Boundary (topology). --- Canonical basis. --- Cartesian product. --- Clifford's theorem. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Complex multiplication. --- Conformal geometry. --- Conformal map. --- Coset. --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential geometry of surfaces. --- Dimension (vector space). --- Dirichlet boundary condition. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein series. --- Euclidean space. --- Existential quantification. --- Explicit formulae (L-function). --- Exterior (topology). --- Finsler manifold. --- Fourier series. --- Fuchsian group. --- Function (mathematics). --- Generating set of a group. --- Group (mathematics). --- Hilbert space. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homotopy. --- Hyperbolic geometry. --- Hyperbolic group. --- Identity matrix. --- Infimum and supremum. --- Inner automorphism. --- Intersection (set theory). --- Intersection number (graph theory). --- Isometry. --- Isomorphism class. --- Isomorphism theorem. --- Kleinian group. --- Limit point. --- Limit set. --- Linear map. --- Lorentz group. --- Mapping class group. --- Mathematical induction. --- Mathematics. --- Matrix (mathematics). --- Matrix multiplication. --- Measure (mathematics). --- Meromorphic function. --- Metric space. --- Modular group. --- Möbius transformation. --- Number theory. --- Osgood curve. --- Parity (mathematics). --- Partial isometry. --- Poisson summation formula. --- Pole (complex analysis). --- Projective space. --- Quadratic differential. --- Quadratic form. --- Quasiconformal mapping. --- Quotient space (linear algebra). --- Quotient space (topology). --- Riemann mapping theorem. --- Riemann sphere. --- Riemann surface. --- Riemann zeta function. --- Scalar multiplication. --- Scientific notation. --- Selberg trace formula. --- Series expansion. --- Sign (mathematics). --- Square-integrable function. --- Subgroup. --- Teichmüller space. --- Theorem. --- Topological manifold. --- Topological space. --- Uniformization. --- Unit disk. --- Variable (mathematics). --- Riemann, Surfaces de --- RIEMANN SURFACES - congresses --- Fonctions d'une variable complexe --- Surfaces de riemann

Listing 1 - 10 of 61 << page
of 7
>>
Sort by