Narrow your search

Library

KU Leuven (3)

VUB (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

UAntwerpen (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2016 (1)

2007 (1)

1990 (1)

Listing 1 - 3 of 3
Sort by
Wave scattering by time-dependent perturbations
Author:
ISBN: 1282158783 9786612158780 1400828163 9781400828166 9781282158788 9780691113401 0691113408 6612158786 Year: 2007 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers the first comprehensive introduction to wave scattering in nonstationary materials. G. F. Roach's aim is to provide an accessible, self-contained resource for newcomers to this important field of research that has applications across a broad range of areas, including radar, sonar, diagnostics in engineering and manufacturing, geophysical prospecting, and ultrasonic medicine such as sonograms. New methods in recent years have been developed to assess the structure and properties of materials and surfaces. When light, sound, or some other wave energy is directed at the material in question, "imperfections" in the resulting echo can reveal a tremendous amount of valuable diagnostic information. The mathematics behind such analysis is sophisticated and complex. However, while problems involving stationary materials are quite well understood, there is still much to learn about those in which the material is moving or changes over time. These so-called non-autonomous problems are the subject of this fascinating book. Roach develops practical strategies, techniques, and solutions for mathematicians and applied scientists working in or seeking entry into the field of modern scattering theory and its applications. Wave Scattering by Time-Dependent Perturbations is destined to become a classic in this rapidly evolving area of inquiry.

Keywords

Waves --- Scattering (Physics) --- Perturbation (Mathematics) --- Perturbation equations --- Perturbation theory --- Approximation theory --- Dynamics --- Functional analysis --- Mathematical physics --- Atomic scattering --- Atoms --- Nuclear scattering --- Particles (Nuclear physics) --- Scattering of particles --- Wave scattering --- Collisions (Nuclear physics) --- Particles --- Collisions (Physics) --- Cycles --- Hydrodynamics --- Benjamin-Feir instability --- Mathematics. --- Scattering --- Acoustic wave equation. --- Acoustic wave. --- Affine space. --- Angular frequency. --- Approximation. --- Asymptotic analysis. --- Asymptotic expansion. --- Banach space. --- Basis (linear algebra). --- Bessel's inequality. --- Boundary value problem. --- Bounded operator. --- C0-semigroup. --- Calculation. --- Characteristic function (probability theory). --- Classical physics. --- Codimension. --- Coefficient. --- Continuous function (set theory). --- Continuous function. --- Continuous spectrum. --- Convolution. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Dimension. --- Dimensional analysis. --- Dirac delta function. --- Dirichlet problem. --- Distribution (mathematics). --- Duhamel's principle. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Electromagnetism. --- Equation. --- Existential quantification. --- Exponential function. --- Floquet theory. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fredholm integral equation. --- Frequency domain. --- Helmholtz equation. --- Hilbert space. --- Initial value problem. --- Integral equation. --- Integral transform. --- Integration by parts. --- Inverse problem. --- Inverse scattering problem. --- Lebesgue measure. --- Linear differential equation. --- Linear map. --- Linear space (geometry). --- Locally integrable function. --- Longitudinal wave. --- Mathematical analysis. --- Mathematical physics. --- Metric space. --- Operator theory. --- Ordinary differential equation. --- Orthonormal basis. --- Orthonormality. --- Parseval's theorem. --- Partial derivative. --- Partial differential equation. --- Phase velocity. --- Plane wave. --- Projection (linear algebra). --- Propagator. --- Quantity. --- Quantum mechanics. --- Reflection coefficient. --- Requirement. --- Riesz representation theorem. --- Scalar (physics). --- Scattering theory. --- Scattering. --- Scientific notation. --- Self-adjoint operator. --- Self-adjoint. --- Series expansion. --- Sine wave. --- Spectral method. --- Spectral theorem. --- Spectral theory. --- Square-integrable function. --- Subset. --- Theorem. --- Theory. --- Time domain. --- Time evolution. --- Unbounded operator. --- Unitarity (physics). --- Vector space. --- Volterra integral equation. --- Wave function. --- Wave packet. --- Wave propagation.


Book
Maxwell's demon
Authors: ---
ISBN: 1400861527 0691605467 9781400861521 0691087261 069108727X 9780691605463 9780691087269 0691087261 9780691087276 069108727X 0691634432 Year: 1990 Publisher: Princeton, New Jersey

Loading...
Export citation

Choose an application

Bookmark

Abstract

About 120 years ago, James Clerk Maxwell introduced his now legendary hypothetical "demon" as a challenge to the integrity of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science--and linkages have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Until now its important source material has been scattered throughout diverse journals.This book brings under one cover twenty-five reprints, including seminal works by Maxwell and William Thomson; historical reviews by Martin Klein, Edward Daub, and Peter Heimann; information theoretic contributions by Leo Szilard, Leon Brillouin, Dennis Gabor, and Jerome Rothstein; and innovations by Rolf Landauer and Charles Bennett illustrating linkages with the limits of computation. An introductory chapter summarizes the demon's life, from Maxwell's illustration of the second law's statistical nature to the most recent "exorcism" of the demon based on a need periodically to erase its memory. An annotated chronological bibliography is included.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Thermodynamics. --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Maxwell's demon. --- Adiabatic process. --- Automaton. --- Available energy (particle collision). --- Billiard-ball computer. --- Black hole information paradox. --- Black hole thermodynamics. --- Black-body radiation. --- Boltzmann's entropy formula. --- Boyle's law. --- Calculation. --- Carnot's theorem (thermodynamics). --- Catalysis. --- Chaos theory. --- Computation. --- Copying. --- Creation and annihilation operators. --- Digital physics. --- Dissipation. --- Distribution law. --- Domain wall. --- EPR paradox. --- Energy level. --- Entropy of mixing. --- Entropy. --- Exchange interaction. --- Expectation value (quantum mechanics). --- Extrapolation. --- Fair coin. --- Fermi–Dirac statistics. --- Gibbs free energy. --- Gibbs paradox. --- Guessing. --- Halting problem. --- Hamiltonian mechanics. --- Heat engine. --- Heat. --- Helmholtz free energy. --- Ideal gas. --- Idealization. --- Information theory. --- Instant. --- Internal energy. --- Irreversible process. --- James Prescott Joule. --- Johnson–Nyquist noise. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Least squares. --- Loschmidt's paradox. --- Ludwig Boltzmann. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Measurement. --- Mechanical equivalent of heat. --- Microscopic reversibility. --- Molecule. --- Negative temperature. --- Negentropy. --- Newton's law of universal gravitation. --- Nitrous oxide. --- Non-equilibrium thermodynamics. --- Old quantum theory. --- Particle in a box. --- Perpetual motion. --- Photon. --- Probability. --- Quantity. --- Quantum limit. --- Quantum mechanics. --- Rectangular potential barrier. --- Result. --- Reversible computing. --- Reversible process (thermodynamics). --- Richard Feynman. --- Rolf Landauer. --- Rudolf Clausius. --- Scattering. --- Schrödinger equation. --- Second law of thermodynamics. --- Self-information. --- Spontaneous process. --- Standard state. --- Statistical mechanics. --- Superselection. --- Temperature. --- Theory of heat. --- Theory. --- Thermally isolated system. --- Thermodynamic equilibrium. --- Thermodynamic system. --- Thought experiment. --- Turing machine. --- Ultimate fate of the universe. --- Uncertainty principle. --- Unitarity (physics). --- Van der Waals force. --- Wave function collapse. --- Work output.

Harmonic Analysis in Phase Space. (AM-122), Volume 122
Author:
ISBN: 0691085277 0691085285 1400882427 9780691085289 9780691085272 Year: 2016 Volume: 122 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.

Keywords

Harmonic analysis. Fourier analysis --- Phase space (Statistical physics) --- Harmonic analysis --- 512.54 <043> --- 530.145 <043> --- 517.986.6 --- 51-7 <043> --- 517.986.6 <043> --- Groups. Group theory--Dissertaties --- Quantum theory--Dissertaties --- Harmonic analysis of functions of groups and homogeneous spaces --- Mathematical studies and methods in other sciences. Scientific mathematics. Actuarial mathematics. Biometrics. Econometrics etc.--Dissertaties --- Harmonic analysis of functions of groups and homogeneous spaces--Dissertaties --- 517.986.6 <043> Harmonic analysis of functions of groups and homogeneous spaces--Dissertaties --- 51-7 <043> Mathematical studies and methods in other sciences. Scientific mathematics. Actuarial mathematics. Biometrics. Econometrics etc.--Dissertaties --- 517.986.6 Harmonic analysis of functions of groups and homogeneous spaces --- 530.145 <043> Quantum theory--Dissertaties --- 512.54 <043> Groups. Group theory--Dissertaties --- Space, Phase (Statistical physics) --- Generalized spaces --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Harmonic analysis. --- Analytic continuation. --- Analytic function. --- Antisymmetric tensor. --- Asymptotic expansion. --- Automorphism. --- Bilinear form. --- Bounded operator. --- Calculation. --- Canonical commutation relation. --- Canonical transformation. --- Cauchy–Riemann equations. --- Cayley transform. --- Class function (algebra). --- Classical mechanics. --- Commutative property. --- Complex analysis. --- Configuration space. --- Differential equation. --- Differential geometry. --- Differential operator. --- Eigenvalues and eigenvectors. --- Equation. --- Explicit formula. --- Fock space. --- Fourier analysis. --- Fourier integral operator. --- Fourier transform. --- Functional analysis. --- Gaussian function. --- Gaussian integral. --- Geometric quantization. --- Hamiltonian mechanics. --- Hamiltonian vector field. --- Heisenberg group. --- Hermite polynomials. --- Hermitian symmetric space. --- Hilbert space. --- Hilbert transform. --- Integral transform. --- Invariant subspace. --- Irreducible representation. --- Lebesgue measure. --- Lie algebra. --- Lie superalgebra. --- Lie theory. --- Mathematical physics. --- Number theory. --- Observable. --- Ordinary differential equation. --- Orthonormal basis. --- Oscillator representation. --- Oscillatory integral. --- Partial differential equation. --- Phase factor. --- Phase space. --- Point at infinity. --- Poisson bracket. --- Polynomial. --- Power series. --- Probability. --- Projection (linear algebra). --- Projective Hilbert space. --- Projective representation. --- Projective space. --- Pseudo-differential operator. --- Pullback (category theory). --- Quadratic function. --- Quantum harmonic oscillator. --- Quantum mechanics. --- Representation theory. --- Schrödinger equation. --- Self-adjoint operator. --- Semigroup. --- Several complex variables. --- Siegel disc. --- Sobolev space. --- Spectral theorem. --- Spectral theory. --- State-space representation. --- Stone's theorem. --- Stone–Weierstrass theorem. --- Summation. --- Symmetric space. --- Symmetric tensor. --- Symplectic geometry. --- Symplectic group. --- Symplectic vector space. --- Symplectomorphism. --- Tangent space. --- Tangent vector. --- Theorem. --- Translational symmetry. --- Unbounded operator. --- Unit vector. --- Unitarity (physics). --- Unitary operator. --- Unitary representation. --- Variable (mathematics). --- Wave packet.

Listing 1 - 3 of 3
Sort by