Narrow your search

Library

KU Leuven (7)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

VIVES (6)

ULiège (5)

ULB (4)

FARO (3)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2022 (3)

2020 (3)

2019 (1)

2016 (1)

2007 (1)

More...
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Applied Functional Analysis and Its Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied functional analysis has an extensive history. In the last century, this field has often been used in physical sciences, such as wave and heat phenomena. In recent decades, with the development of nonlinear functional analysis, this field has been used to model a variety of engineering, medical, and computer sciences. Two of the most significant issues in this area are modeling and optimization. Thus, we consider some recently published works on fixed point, variational inequalities, and optimization problems. These works could lead readers to obtain new novelties and familiarize them with some applications of this area.

Keywords

Research & information: general --- Mathematics & science --- vector variational-like inequalities --- vector optimization problems --- limiting (p,r)-α-(η,θ)-invexity --- Lipschitz continuity --- Fan-KKM theorem --- set-valued optimization problems --- higher-order weak adjacent epiderivatives --- higher-order mond-weir type dual --- benson proper efficiency --- fractional calculus --- ψ-fractional integrals --- fractional differential equations --- contraction --- hybrid contractions --- volterra fractional integral equations --- fixed point --- inertial-like subgradient-like extragradient method with line-search process --- pseudomonotone variational inequality problem --- asymptotically nonexpansive mapping --- strictly pseudocontractive mapping --- sequentially weak continuity --- method with line-search process --- pseudomonotone variational inequality --- strictly pseudocontractive mappings --- common fixed point --- hyperspace --- informal open sets --- informal norms --- null set --- open balls --- modified implicit iterative methods with perturbed mapping --- pseudocontractive mapping --- strongly pseudocontractive mapping --- nonexpansive mapping --- weakly continuous duality mapping --- set optimization --- set relations --- nonlinear scalarizing functional --- algebraic interior --- vector closure --- conjugate gradient method --- steepest descent method --- hybrid projection --- shrinking projection --- inertial Mann --- strongly convergence --- strict pseudo-contraction --- variational inequality problem --- inclusion problem --- signal processing


Book
Applied Functional Analysis and Its Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied functional analysis has an extensive history. In the last century, this field has often been used in physical sciences, such as wave and heat phenomena. In recent decades, with the development of nonlinear functional analysis, this field has been used to model a variety of engineering, medical, and computer sciences. Two of the most significant issues in this area are modeling and optimization. Thus, we consider some recently published works on fixed point, variational inequalities, and optimization problems. These works could lead readers to obtain new novelties and familiarize them with some applications of this area.

Keywords

Research & information: general --- Mathematics & science --- vector variational-like inequalities --- vector optimization problems --- limiting (p,r)-α-(η,θ)-invexity --- Lipschitz continuity --- Fan-KKM theorem --- set-valued optimization problems --- higher-order weak adjacent epiderivatives --- higher-order mond-weir type dual --- benson proper efficiency --- fractional calculus --- ψ-fractional integrals --- fractional differential equations --- contraction --- hybrid contractions --- volterra fractional integral equations --- fixed point --- inertial-like subgradient-like extragradient method with line-search process --- pseudomonotone variational inequality problem --- asymptotically nonexpansive mapping --- strictly pseudocontractive mapping --- sequentially weak continuity --- method with line-search process --- pseudomonotone variational inequality --- strictly pseudocontractive mappings --- common fixed point --- hyperspace --- informal open sets --- informal norms --- null set --- open balls --- modified implicit iterative methods with perturbed mapping --- pseudocontractive mapping --- strongly pseudocontractive mapping --- nonexpansive mapping --- weakly continuous duality mapping --- set optimization --- set relations --- nonlinear scalarizing functional --- algebraic interior --- vector closure --- conjugate gradient method --- steepest descent method --- hybrid projection --- shrinking projection --- inertial Mann --- strongly convergence --- strict pseudo-contraction --- variational inequality problem --- inclusion problem --- signal processing


Book
Applied Functional Analysis and Its Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied functional analysis has an extensive history. In the last century, this field has often been used in physical sciences, such as wave and heat phenomena. In recent decades, with the development of nonlinear functional analysis, this field has been used to model a variety of engineering, medical, and computer sciences. Two of the most significant issues in this area are modeling and optimization. Thus, we consider some recently published works on fixed point, variational inequalities, and optimization problems. These works could lead readers to obtain new novelties and familiarize them with some applications of this area.

Keywords

vector variational-like inequalities --- vector optimization problems --- limiting (p,r)-α-(η,θ)-invexity --- Lipschitz continuity --- Fan-KKM theorem --- set-valued optimization problems --- higher-order weak adjacent epiderivatives --- higher-order mond-weir type dual --- benson proper efficiency --- fractional calculus --- ψ-fractional integrals --- fractional differential equations --- contraction --- hybrid contractions --- volterra fractional integral equations --- fixed point --- inertial-like subgradient-like extragradient method with line-search process --- pseudomonotone variational inequality problem --- asymptotically nonexpansive mapping --- strictly pseudocontractive mapping --- sequentially weak continuity --- method with line-search process --- pseudomonotone variational inequality --- strictly pseudocontractive mappings --- common fixed point --- hyperspace --- informal open sets --- informal norms --- null set --- open balls --- modified implicit iterative methods with perturbed mapping --- pseudocontractive mapping --- strongly pseudocontractive mapping --- nonexpansive mapping --- weakly continuous duality mapping --- set optimization --- set relations --- nonlinear scalarizing functional --- algebraic interior --- vector closure --- conjugate gradient method --- steepest descent method --- hybrid projection --- shrinking projection --- inertial Mann --- strongly convergence --- strict pseudo-contraction --- variational inequality problem --- inclusion problem --- signal processing


Book
Advances in Multiscale and Multifield Solid Material Interfaces
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Interfaces play an essential role in determining the mechanical properties and the structural integrity of a wide variety of technological materials. As new manufacturing methods become available, interface engineering and architecture at multiscale length levels in multi-physics materials open up to applications with high innovation potential. This Special Issue is dedicated to recent advances in fundamental and applications of solid material interfaces.


Book
Advances in Multiscale and Multifield Solid Material Interfaces
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Interfaces play an essential role in determining the mechanical properties and the structural integrity of a wide variety of technological materials. As new manufacturing methods become available, interface engineering and architecture at multiscale length levels in multi-physics materials open up to applications with high innovation potential. This Special Issue is dedicated to recent advances in fundamental and applications of solid material interfaces.


Book
Advances in Multiscale and Multifield Solid Material Interfaces
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Interfaces play an essential role in determining the mechanical properties and the structural integrity of a wide variety of technological materials. As new manufacturing methods become available, interface engineering and architecture at multiscale length levels in multi-physics materials open up to applications with high innovation potential. This Special Issue is dedicated to recent advances in fundamental and applications of solid material interfaces.

Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105
Author:
ISBN: 0691083304 0691083312 1400881625 9780691083315 Year: 2016 Volume: no. 105 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105, will be forthcoming.

Keywords

Calculus of variations --- Integrals, Multiple --- Differential equations, Elliptic --- Calcul des variations --- Equations différentielles elliptiques --- $ PDMC --- Multiple integrals --- Calculus of variations. --- Multiple integrals. --- Differential equations, Elliptic. --- Equations différentielles elliptiques --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Double integrals --- Iterated integrals --- Triple integrals --- Integrals --- Probabilities --- Isoperimetrical problems --- Variations, Calculus of --- Maxima and minima --- A priori estimate. --- Analytic function. --- Boundary value problem. --- Coefficient. --- Compact space. --- Convex function. --- Convex set. --- Corollary. --- Counterexample. --- David Hilbert. --- Dense set. --- Derivative. --- Differentiable function. --- Differential geometry. --- Dirichlet integral. --- Dirichlet problem. --- Division by zero. --- Ellipse. --- Energy functional. --- Equation. --- Estimation. --- Euler equations (fluid dynamics). --- Existential quantification. --- First variation. --- Generic property. --- Harmonic function. --- Harmonic map. --- Hausdorff dimension. --- Hölder's inequality. --- I0. --- Infimum and supremum. --- Limit superior and limit inferior. --- Linear equation. --- Maxima and minima. --- Maximal function. --- Metric space. --- Minimal surface. --- Multiple integral. --- Nonlinear system. --- Obstacle problem. --- Open set. --- Partial derivative. --- Quantity. --- Semi-continuity. --- Singular solution. --- Smoothness. --- Sobolev space. --- Special case. --- Stationary point. --- Subsequence. --- Subset. --- Theorem. --- Topological property. --- Topology. --- Uniform convergence. --- Variational inequality. --- Weak formulation. --- Weak solution.

Discrete orthogonal polynomials
Author:
ISBN: 9780691127330 0691127336 9780691127347 0691127344 1400837138 1299224121 9781400837137 9781299224124 Year: 2007 Volume: 164 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the theory and applications of discrete orthogonal polynomials--polynomials that are orthogonal on a finite set. Unlike other books, Discrete Orthogonal Polynomials addresses completely general weight functions and presents a new methodology for handling the discrete weights case. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin & P. D. Miller focus on asymptotic aspects of general, nonclassical discrete orthogonal polynomials and set out applications of current interest. Topics covered include the probability theory of discrete orthogonal polynomial ensembles and the continuum limit of the Toda lattice. The primary concern throughout is the asymptotic behavior of discrete orthogonal polynomials for general, nonclassical measures, in the joint limit where the degree increases as some fraction of the total number of points of collocation. The book formulates the orthogonality conditions defining these polynomials as a kind of Riemann-Hilbert problem and then generalizes the steepest descent method for such a problem to carry out the necessary asymptotic analysis.

Keywords

Orthogonal polynomials --- Asymptotic theory --- Orthogonal polynomials -- Asymptotic theory. --- Polynomials. --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Asymptotic theory. --- Asymptotic theory of orthogonal polynomials --- Algebra --- Airy function. --- Analytic continuation. --- Analytic function. --- Ansatz. --- Approximation error. --- Approximation theory. --- Asymptote. --- Asymptotic analysis. --- Asymptotic expansion. --- Asymptotic formula. --- Beta function. --- Boundary value problem. --- Calculation. --- Cauchy's integral formula. --- Cauchy–Riemann equations. --- Change of variables. --- Complex number. --- Complex plane. --- Correlation function. --- Degeneracy (mathematics). --- Determinant. --- Diagram (category theory). --- Discrete measure. --- Distribution function. --- Eigenvalues and eigenvectors. --- Equation. --- Estimation. --- Existential quantification. --- Explicit formulae (L-function). --- Factorization. --- Fredholm determinant. --- Functional derivative. --- Gamma function. --- Gradient descent. --- Harmonic analysis. --- Hermitian matrix. --- Homotopy. --- Hypergeometric function. --- I0. --- Identity matrix. --- Inequality (mathematics). --- Integrable system. --- Invariant measure. --- Inverse scattering transform. --- Invertible matrix. --- Jacobi matrix. --- Joint probability distribution. --- Lagrange multiplier. --- Lax equivalence theorem. --- Limit (mathematics). --- Linear programming. --- Lipschitz continuity. --- Matrix function. --- Maxima and minima. --- Monic polynomial. --- Monotonic function. --- Morera's theorem. --- Neumann series. --- Number line. --- Orthogonal polynomials. --- Orthogonality. --- Orthogonalization. --- Parameter. --- Parametrix. --- Pauli matrices. --- Pointwise convergence. --- Pointwise. --- Polynomial. --- Potential theory. --- Probability distribution. --- Probability measure. --- Probability theory. --- Probability. --- Proportionality (mathematics). --- Quantity. --- Random matrix. --- Random variable. --- Rate of convergence. --- Rectangle. --- Rhombus. --- Riemann surface. --- Special case. --- Spectral theory. --- Statistic. --- Subset. --- Theorem. --- Toda lattice. --- Trace (linear algebra). --- Trace class. --- Transition point. --- Triangular matrix. --- Trigonometric functions. --- Uniform continuity. --- Unit vector. --- Upper and lower bounds. --- Upper half-plane. --- Variational inequality. --- Weak solution. --- Weight function. --- Wishart distribution. --- Orthogonal polynomials - Asymptotic theory


Book
Essays on Fourier analysis in honor of Elias M. Stein : [proceedings of the Princeton Conference in Harmonic Analysis, May 13-17, 1991]
Authors: --- --- --- ---
ISBN: 0691632944 1400852943 0691086559 1306988802 0691603650 9781400852949 9780691603650 9780691632940 Year: 1995 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains the lectures presented at a conference held at Princeton University in May 1991 in honor of Elias M. Stein's sixtieth birthday. The lectures deal with Fourier analysis and its applications. The contributors to the volume are W. Beckner, A. Boggess, J. Bourgain, A. Carbery, M. Christ, R. R. Coifman, S. Dobyinsky, C. Fefferman, R. Fefferman, Y. Han, D. Jerison, P. W. Jones, C. Kenig, Y. Meyer, A. Nagel, D. H. Phong, J. Vance, S. Wainger, D. Watson, G. Weiss, V. Wickerhauser, and T. H. Wolff.The topics of the lectures are: conformally invariant inequalities, oscillatory integrals, analytic hypoellipticity, wavelets, the work of E. M. Stein, elliptic non-smooth PDE, nodal sets of eigenfunctions, removable sets for Sobolev spaces in the plane, nonlinear dispersive equations, bilinear operators and renormalization, holomorphic functions on wedges, singular Radon and related transforms, Hilbert transforms and maximal functions on curves, Besov and related function spaces on spaces of homogeneous type, and counterexamples with harmonic gradients in Euclidean space.Originally published in 1995.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Fourier analysis --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Congresses --- Analysis, Fourier --- -Analysis, Fourier --- -Theory of the Fourier integral --- -517.518.5 Theory of the Fourier integral --- 517.518.5 --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- Mathematical analysis --- Analytic function. --- Banach fixed-point theorem. --- Bessel function. --- Blaschke product. --- Boundary value problem. --- Bounded operator. --- Cauchy–Riemann equations. --- Coefficient. --- Commutative property. --- Convolution. --- Degeneracy (mathematics). --- Differential equation. --- Differential geometry. --- Differential operator. --- Dirichlet problem. --- Distribution (mathematics). --- Eigenvalues and eigenvectors. --- Elias M. Stein. --- Elliptic integral. --- Elliptic operator. --- Equation. --- Ergodic theory. --- Error analysis (mathematics). --- Estimation. --- Existential quantification. --- Fourier analysis. --- Fourier integral operator. --- Fourier series. --- Fourier transform. --- Fundamental matrix (linear differential equation). --- Fundamental solution. --- Geometry. --- Green's function. --- Haar measure. --- Hardy space. --- Hardy–Littlewood maximal function. --- Harmonic analysis. --- Harmonic function. --- Harmonic measure. --- Hausdorff dimension. --- Heisenberg group. --- Hermitian matrix. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Hopf lemma. --- Hyperbolic partial differential equation. --- Integral geometry. --- Integral transform. --- Julia set. --- Korteweg–de Vries equation. --- Lagrangian (field theory). --- Lebesgue differentiation theorem. --- Lebesgue measure. --- Lie algebra. --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Mandelbrot set. --- Martingale (probability theory). --- Mathematical analysis. --- Maximal function. --- Measurable Riemann mapping theorem. --- Minkowski space. --- Misiurewicz point. --- Morera's theorem. --- Möbius transformation. --- Nilpotent group. --- Non-Euclidean geometry. --- Numerical analysis. --- Nyquist–Shannon sampling theorem. --- Ordinary differential equation. --- Orthonormal basis. --- Orthonormal frame. --- Oscillatory integral. --- Partial differential equation. --- Plurisubharmonic function. --- Pseudo-Riemannian manifold. --- Pseudo-differential operator. --- Pythagorean theorem. --- Radon transform. --- Regularity theorem. --- Representation theory. --- Riemannian manifold. --- Riesz representation theorem. --- Riesz transform. --- Schrödinger equation. --- Schwartz kernel theorem. --- Sign (mathematics). --- Simultaneous equations. --- Singular integral. --- Sobolev inequality. --- Sobolev space. --- Special case. --- Symmetrization. --- Theorem. --- Trigonometric series. --- Uniqueness theorem. --- Variable (mathematics). --- Variational inequality. --- Analyse harmonique


Book
Iterative Methods for Solving Nonlinear Equations and Systems
Authors: --- ---
ISBN: 3039219413 3039219405 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Keywords

Lipschitz condition --- heston model --- rectangular matrices --- computational efficiency --- Hull–White --- order of convergence --- signal and image processing --- dynamics --- divided difference operator --- engineering applications --- smooth and nonsmooth operators --- Newton-HSS method --- higher order method --- Moore–Penrose --- asymptotic error constant --- multiple roots --- higher order --- efficiency index --- multiple-root finder --- computational efficiency index --- Potra–Pták method --- nonlinear equations --- system of nonlinear equations --- purely imaginary extraneous fixed point --- attractor basin --- point projection --- fixed point theorem --- convex constraints --- weight function --- radius of convergence --- Frédholm integral equation --- semi-local convergence --- nonlinear HSS-like method --- convexity --- accretive operators --- Newton-type methods --- multipoint iterations --- banach space --- Kantorovich hypothesis --- variational inequality problem --- Newton method --- semilocal convergence --- least square problem --- Fréchet derivative --- Newton’s method --- iterative process --- Newton-like method --- Banach space --- sixteenth-order optimal convergence --- nonlinear systems --- Chebyshev–Halley-type --- Jarratt method --- iteration scheme --- Newton’s iterative method --- basins of attraction --- drazin inverse --- option pricing --- higher order of convergence --- non-linear equation --- numerical experiment --- signal processing --- optimal methods --- rate of convergence --- n-dimensional Euclidean space --- non-differentiable operator --- projection method --- Newton’s second order method --- intersection --- planar algebraic curve --- Hilbert space --- conjugate gradient method --- sixteenth order convergence method --- Padé approximation --- optimal iterative methods --- error bound --- high order --- Fredholm integral equation --- global convergence --- iterative method --- integral equation --- ?-continuity condition --- systems of nonlinear equations --- generalized inverse --- local convergence --- iterative methods --- multi-valued quasi-nonexpasive mappings --- R-order --- finite difference (FD) --- nonlinear operator equation --- basin of attraction --- PDE --- King’s family --- Steffensen’s method --- nonlinear monotone equations --- Picard-HSS method --- nonlinear models --- the improved curvature circle algorithm --- split variational inclusion problem --- computational order of convergence --- with memory --- multipoint iterative methods --- Kung–Traub conjecture --- multiple zeros --- fourth order iterative methods --- parametric curve --- optimal order --- nonlinear equation

Listing 1 - 10 of 11 << page
of 2
>>
Sort by