Narrow your search

Library

KU Leuven (6)

ULiège (2)

VUB (2)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

UHasselt (1)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2023 (1)

2018 (1)

2016 (1)

2015 (1)

2008 (1)

More...
Listing 1 - 6 of 6
Sort by
Introduction to toric varieties
Author:
ISBN: 0691000492 0691033323 1400882524 Year: 1993 Publisher: Princeton Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are "ed without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Keywords

Algebraic geometry --- Differential geometry. Global analysis --- 512.7 --- Algebraic geometry. Commutative rings and algebras --- Toric varieties. --- 512.7 Algebraic geometry. Commutative rings and algebras --- Toric varieties --- Embeddings, Torus --- Torus embeddings --- Varieties, Toric --- Algebraic varieties --- Addition. --- Affine plane. --- Affine space. --- Affine variety. --- Alexander Grothendieck. --- Alexander duality. --- Algebraic curve. --- Algebraic group. --- Atiyah–Singer index theorem. --- Automorphism. --- Betti number. --- Big O notation. --- Characteristic class. --- Chern class. --- Chow group. --- Codimension. --- Cohomology. --- Combinatorics. --- Commutative property. --- Complete intersection. --- Convex polytope. --- Convex set. --- Coprime integers. --- Cotangent space. --- Dedekind sum. --- Dimension (vector space). --- Dimension. --- Direct proof. --- Discrete valuation ring. --- Discrete valuation. --- Disjoint union. --- Divisor (algebraic geometry). --- Divisor. --- Dual basis. --- Dual space. --- Equation. --- Equivalence class. --- Equivariant K-theory. --- Euler characteristic. --- Exact sequence. --- Explicit formula. --- Facet (geometry). --- Fundamental group. --- Graded ring. --- Grassmannian. --- H-vector. --- Hirzebruch surface. --- Hodge theory. --- Homogeneous coordinates. --- Homomorphism. --- Hypersurface. --- Intersection theory. --- Invertible matrix. --- Invertible sheaf. --- Isoperimetric inequality. --- Lattice (group). --- Leray spectral sequence. --- Limit point. --- Line bundle. --- Line segment. --- Linear subspace. --- Local ring. --- Mathematical induction. --- Mixed volume. --- Moduli space. --- Moment map. --- Monotonic function. --- Natural number. --- Newton polygon. --- Open set. --- Picard group. --- Pick's theorem. --- Polytope. --- Projective space. --- Quadric. --- Quotient space (topology). --- Regular sequence. --- Relative interior. --- Resolution of singularities. --- Restriction (mathematics). --- Resultant. --- Riemann–Roch theorem. --- Serre duality. --- Sign (mathematics). --- Simplex. --- Simplicial complex. --- Simultaneous equations. --- Spectral sequence. --- Subgroup. --- Subset. --- Summation. --- Surjective function. --- Tangent bundle. --- Theorem. --- Topology. --- Toric variety. --- Unit disk. --- Vector space. --- Weil conjecture. --- Zariski topology.

Algebraic curves over a finite field
Authors: --- ---
ISBN: 1400847419 9781400847419 1306988608 9781306988605 9781400847426 1400847427 0691096791 9780691096797 9780691096797 Year: 2008 Publisher: Princeton, New Jersey

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

Keywords

Curves, Algebraic. --- Finite fields (Algebra) --- Modular fields (Algebra) --- Algebra, Abstract --- Algebraic fields --- Galois theory --- Modules (Algebra) --- Algebraic curves --- Algebraic varieties --- Abelian group. --- Abelian variety. --- Affine plane. --- Affine space. --- Affine variety. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic function. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number field. --- Algebraic number theory. --- Algebraic number. --- Algebraic variety. --- Algebraically closed field. --- Applied mathematics. --- Automorphism. --- Birational invariant. --- Characteristic exponent. --- Classification theorem. --- Clifford's theorem. --- Combinatorics. --- Complex number. --- Computation. --- Cyclic group. --- Cyclotomic polynomial. --- Degeneracy (mathematics). --- Degenerate conic. --- Divisor (algebraic geometry). --- Divisor. --- Dual curve. --- Dual space. --- Elliptic curve. --- Equation. --- Fermat curve. --- Finite field. --- Finite geometry. --- Finite group. --- Formal power series. --- Function (mathematics). --- Function field. --- Fundamental theorem. --- Galois extension. --- Galois theory. --- Gauss map. --- General position. --- Generic point. --- Geometry. --- Homogeneous polynomial. --- Hurwitz's theorem. --- Hyperelliptic curve. --- Hyperplane. --- Identity matrix. --- Inequality (mathematics). --- Intersection number (graph theory). --- Intersection number. --- J-invariant. --- Line at infinity. --- Linear algebra. --- Linear map. --- Mathematical induction. --- Mathematics. --- Menelaus' theorem. --- Modular curve. --- Natural number. --- Number theory. --- Parity (mathematics). --- Permutation group. --- Plane curve. --- Point at infinity. --- Polar curve. --- Polygon. --- Polynomial. --- Power series. --- Prime number. --- Projective plane. --- Projective space. --- Quadratic transformation. --- Quadric. --- Resolution of singularities. --- Riemann hypothesis. --- Scalar multiplication. --- Scientific notation. --- Separable extension. --- Separable polynomial. --- Sign (mathematics). --- Singular point of a curve. --- Special case. --- Subgroup. --- Sylow theorems. --- System of linear equations. --- Tangent. --- Theorem. --- Transcendence degree. --- Upper and lower bounds. --- Valuation ring. --- Variable (mathematics). --- Vector space.


Book
The arithmetic of polynomial dynamical pairs
Authors: ---
ISBN: 0691235481 Year: 2023 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an 'unlikely intersection' statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco.

Keywords

MATHEMATICS / Geometry / Algebraic. --- Affine plane. --- Affine space. --- Affine transformation. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic surface. --- Algebraic variety. --- Algebraically closed field. --- Analysis. --- Analytic function. --- Analytic geometry. --- Approximation. --- Arithmetic dynamics. --- Asymmetric graph. --- Ball (mathematics). --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Characterization (mathematics). --- Chebyshev polynomials. --- Coefficient. --- Combinatorics. --- Complex manifold. --- Complex number. --- Computation. --- Computer programming. --- Conjugacy class. --- Connected component (graph theory). --- Continuous function (set theory). --- Coprime integers. --- Correspondence theorem (group theory). --- Counting. --- Critical graph. --- Cubic function. --- Datasheet. --- Disk (mathematics). --- Divisor (algebraic geometry). --- Elliptic curve. --- Equation. --- Equidistribution theorem. --- Equivalence relation. --- Euclidean topology. --- Existential quantification. --- Fixed point (mathematics). --- Function space. --- Geometric (company). --- Graph (discrete mathematics). --- Hamiltonian mechanics. --- Hausdorff dimension. --- Hausdorff measure. --- Holomorphic function. --- Inequality (mathematics). --- Instance (computer science). --- Integer. --- Intermediate value theorem. --- Intersection (set theory). --- Inverse-square law. --- Irreducible component. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Line (geometry). --- Metric space. --- Moduli space. --- Moment (mathematics). --- Montel's theorem. --- P-adic number. --- Parameter. --- Pascal's Wager. --- Periodic point. --- Polynomial. --- Power series. --- Primitive polynomial (field theory). --- Projective line. --- Quotient ring. --- Rational number. --- Realizability. --- Renormalization. --- Riemann surface. --- Ring of integers. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Sign (mathematics). --- Stone–Weierstrass theorem. --- Subharmonic function. --- Support (mathematics). --- Surjective function. --- Theorem. --- Theory. --- Topology. --- Transfer principle. --- Union (set theory). --- Unit disk. --- Variable (computer science). --- Variable (mathematics). --- Zariski topology. --- Polynomials. --- Dynamics. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Algebra --- Algebraic geometry. --- Mathematics.


Book
Contributions to the Theory of Nonlinear Oscillations (AM-45), Volume V
Authors: --- ---
ISBN: 1400882648 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Contributions to the Theory of Nonlinear Oscillations (AM-45), Volume V, will be forthcoming.

Keywords

Oscillations. --- Absolute value. --- Abstract algebra. --- Affine plane. --- Affine space. --- Algebraic Method. --- Analytic function. --- Bifurcation theory. --- Big O notation. --- Canonical form. --- Cartesian coordinate system. --- Cauchy sequence. --- Characteristic exponent. --- Characteristic polynomial. --- Clockwise. --- Coefficient matrix. --- Coefficient. --- Complete theory. --- Complex conjugate. --- Complex number. --- Complex plane. --- Computation. --- Connected space. --- Continuous function. --- Control function (econometrics). --- Convex set. --- Corollary. --- Critical frequency. --- Curve. --- Degeneracy (mathematics). --- Degrees of freedom (statistics). --- Determinant. --- Differentiable function. --- Differentiable manifold. --- Differential equation. --- Dimension. --- Dimensional analysis. --- Divisor (algebraic geometry). --- Eigenvalues and eigenvectors. --- Elliptic function. --- Endomorphism. --- Equation. --- Equations of motion. --- Existence theorem. --- Existential quantification. --- Fixed point (mathematics). --- Floquet theory. --- Homeomorphism. --- Homogeneous function. --- Homotopy. --- Hyperplane. --- Hypersurface. --- Implicit function theorem. --- Interval (mathematics). --- Limit cycle. --- Limit point. --- Line element. --- Linear algebra. --- Linear differential equation. --- Linear map. --- Linear space (geometry). --- Linearity. --- Lipschitz continuity. --- Lyapunov stability. --- Manifold. --- Matrix function. --- Maxima and minima. --- Morphism. --- N-vector. --- Non-associative algebra. --- Nonlinear system. --- Optimal control. --- Orbital stability. --- Parameter. --- Parametrization. --- Periodic function. --- Piecewise. --- Probability. --- Quadratic differential. --- Quadratic function. --- Quadratic. --- Real projective plane. --- Real projective space. --- Scientific notation. --- Second derivative. --- Semicircle. --- Separatrix (mathematics). --- Sign (mathematics). --- Special case. --- Submanifold. --- Summation. --- Theorem. --- Theory. --- Topological dynamics. --- Topological space. --- Transpose. --- Two-dimensional space. --- Uniform convergence. --- Uniqueness theorem. --- Vector space. --- Zero of a function.


Book
Elliptic Curves. (MN-40), Volume 40
Author:
ISBN: 0691186901 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

An elliptic curve is a particular kind of cubic equation in two variables whose projective solutions form a group. Modular forms are analytic functions in the upper half plane with certain transformation laws and growth properties. The two subjects--elliptic curves and modular forms--come together in Eichler-Shimura theory, which constructs elliptic curves out of modular forms of a special kind. The converse, that all rational elliptic curves arise this way, is called the Taniyama-Weil Conjecture and is known to imply Fermat's Last Theorem. Elliptic curves and the modeular forms in the Eichler- Shimura theory both have associated L functions, and it is a consequence of the theory that the two kinds of L functions match. The theory covered by Anthony Knapp in this book is, therefore, a window into a broad expanse of mathematics--including class field theory, arithmetic algebraic geometry, and group representations--in which the concidence of L functions relates analysis and algebra in the most fundamental ways. Developing, with many examples, the elementary theory of elliptic curves, the book goes on to the subject of modular forms and the first connections with elliptic curves. The last two chapters concern Eichler-Shimura theory, which establishes a much deeper relationship between the two subjects. No other book in print treats the basic theory of elliptic curves with only undergraduate mathematics, and no other explains Eichler-Shimura theory in such an accessible manner.

Keywords

Curves, Elliptic. --- Affine plane (incidence geometry). --- Affine space. --- Affine variety. --- Algebra homomorphism. --- Algebraic extension. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number theory. --- Algebraic number. --- Analytic continuation. --- Analytic function. --- Associative algebra. --- Automorphism. --- Big O notation. --- Binary quadratic form. --- Birch and Swinnerton-Dyer conjecture. --- Bounded set (topological vector space). --- Change of variables. --- Characteristic polynomial. --- Coefficient. --- Compactification (mathematics). --- Complex conjugate. --- Complex manifold. --- Complex number. --- Conjecture. --- Coprime integers. --- Cusp form. --- Cyclic group. --- Degeneracy (mathematics). --- Dimension (vector space). --- Dirichlet character. --- Dirichlet series. --- Division algebra. --- Divisor. --- Eigenform. --- Eigenvalues and eigenvectors. --- Elementary symmetric polynomial. --- Elliptic curve. --- Elliptic function. --- Elliptic integral. --- Equation. --- Euler product. --- Finitely generated abelian group. --- Fourier analysis. --- Function (mathematics). --- Functional equation. --- General linear group. --- Group homomorphism. --- Group isomorphism. --- Hecke operator. --- Holomorphic function. --- Homomorphism. --- Ideal (ring theory). --- Integer matrix. --- Integer. --- Integral domain. --- Intersection (set theory). --- Inverse function theorem. --- Invertible matrix. --- Irreducible polynomial. --- Isogeny. --- J-invariant. --- Linear fractional transformation. --- Linear map. --- Liouville's theorem (complex analysis). --- Mathematical induction. --- Meromorphic function. --- Minimal polynomial (field theory). --- Modular form. --- Monic polynomial. --- Möbius transformation. --- Number theory. --- P-adic number. --- Polynomial ring. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Principal axis theorem. --- Principal ideal domain. --- Principal ideal. --- Projective line. --- Projective variety. --- Quadratic equation. --- Quadratic function. --- Quadratic reciprocity. --- Riemann surface. --- Riemann zeta function. --- Simultaneous equations. --- Special case. --- Summation. --- Taylor series. --- Theorem. --- Torsion subgroup. --- Transcendence degree. --- Uniformization theorem. --- Unique factorization domain. --- Variable (mathematics). --- Weierstrass's elliptic functions. --- Weil conjecture.


Book
The mathematics of various entertaining subjects : research in recreational math
Authors: --- ---
ISBN: 1400881331 9781400881338 Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books exploring puzzles and brainteasers, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects brings together authors from a variety of specialties to present fascinating problems and solutions in recreational mathematics. Contributors to the book show how sophisticated mathematics can help construct mazes that look like famous people, how the analysis of crossword puzzles has much in common with understanding epidemics, and how the theory of electrical circuits is useful in understanding the classic Towers of Hanoi puzzle. The card game SET is related to the theory of error-correcting codes, and simple tic-tac-toe takes on a new life when played on an affine plane. Inspirations for the book's wealth of problems include board games, card tricks, fake coins, flexagons, pencil puzzles, poker, and so much more. Looking at a plethora of eclectic games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.

Keywords

Mathematical recreations. --- Mathematical recreations --- Research. --- Mathematical puzzles --- Number games --- Recreational mathematics --- Recreations, Mathematical --- Puzzles --- Scientific recreations --- Games in mathematics education --- Magic squares --- Magic tricks in mathematics education --- Mathematics. --- Mathematic --- Amazing Asteroid. --- Atoll. --- Begird. --- Bernstein's Bijection. --- Chromatic Combat. --- Cookie Monster number. --- Cookie Monster. --- Devious Dice. --- Eluding Execution. --- EndGame. --- Fibonacci sequence. --- Flipping Fun. --- Flush. --- Full House. --- Get the Giraffe. --- Gilbreath numbers. --- Gilbreath permutations. --- Graeco-Latin squares. --- Hamming weight. --- Heartless Poker. --- Hex. --- Knop's puzzle. --- Leonhard Euler. --- Norman Gilbreath. --- SET. --- Sperner's Lemma. --- Straight. --- Super-n-nacci sequence. --- The Game of Y. --- The New York Times. --- Tower of Hanoi. --- Traveling Salesman Problem. --- Tribonacci sequence. --- Zeckendorf representation. --- advanced mathematics. --- affine plane. --- affine planes. --- algorithms. --- baseball. --- card effects. --- card games. --- card moves. --- card tricks. --- chess. --- coding theory. --- coin-weighing puzzles. --- connection games. --- continued fractions. --- cookies. --- coupling. --- crossword networks. --- crossword puzzle difficulty. --- crossword puzzles. --- decomposition. --- delta-to-wye transformation. --- dissection puzzles. --- divination puzzles. --- dualism. --- electrical power distribution. --- epidemics. --- error correction. --- error detection. --- error-correcting codes. --- find-and-label problem. --- flexagons. --- folding puzzles. --- game-theoretic perspective. --- generalizations. --- generator assignment. --- graphical objects. --- group structures. --- ice cream trick. --- infinite families. --- iterative stochastic process. --- just-find problem. --- linear code. --- magic tricks. --- mathematical exhibits. --- mathematical puzzles. --- maze design. --- mazes. --- minimum spanning tree. --- multiple-pans problem. --- museums. --- n-nacci sequence. --- network properties. --- network structure. --- one-move puzzles. --- packing puzzles. --- parallel scales. --- parallel weighing problem. --- period-four move. --- period-four principles. --- phyllotactic mazes. --- playing cards. --- poker. --- probability. --- random graph process. --- random moves. --- random walks. --- rearrangement puzzles. --- recreational mathematics. --- recreational problems. --- seeded stippling. --- simple objects. --- simplex. --- squash. --- surreal numbers. --- symmetries. --- tetraflexagons. --- tic-tac-toe. --- unique solutions. --- vortex tiles. --- weighing puzzles. --- winning strategies.

Listing 1 - 6 of 6
Sort by