Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems.

Keywords

Technology: general issues --- passive house --- enclosure structure --- heat transfer coefficient --- energy consumption --- turbo-propeller --- regional --- fuel --- weight --- range --- design --- CO2 reduction --- multi-objective combinatorial optimization --- meta-heuristics --- ant colony optimization --- non-intrusive load monitoring --- appliance classification --- appliance feature --- recurrence graph --- weighted recurrence graph --- V-I trajectory --- convolutional neural network --- energy baselines --- machine learning --- clustering --- neural methods --- smart intelligent systems --- building energy consumption --- building load forecasting --- energy efficiency --- thermal improved of buildings --- anti-icing --- heat and mass transfer --- heating power distribution --- heat load reduction --- optimization method --- experimental validation --- big data process --- predictive maintenance --- fracturing roofs to maintain entry (FRME) --- field measurement --- numerical simulation --- side abutment pressure --- strata movement --- energy --- manufacturing --- prediction --- forecasting --- modelling --- passive house --- enclosure structure --- heat transfer coefficient --- energy consumption --- turbo-propeller --- regional --- fuel --- weight --- range --- design --- CO2 reduction --- multi-objective combinatorial optimization --- meta-heuristics --- ant colony optimization --- non-intrusive load monitoring --- appliance classification --- appliance feature --- recurrence graph --- weighted recurrence graph --- V-I trajectory --- convolutional neural network --- energy baselines --- machine learning --- clustering --- neural methods --- smart intelligent systems --- building energy consumption --- building load forecasting --- energy efficiency --- thermal improved of buildings --- anti-icing --- heat and mass transfer --- heating power distribution --- heat load reduction --- optimization method --- experimental validation --- big data process --- predictive maintenance --- fracturing roofs to maintain entry (FRME) --- field measurement --- numerical simulation --- side abutment pressure --- strata movement --- energy --- manufacturing --- prediction --- forecasting --- modelling


Book
Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems.


Book
Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems.


Book
Evaluation of Energy Efficiency and Flexibility in Smart Buildings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue “Evaluation of Energy Efficiency and Flexibility in Smart Buildings” addresses the relevant role of buildings as strategic instruments to improve the efficiency and flexibility of the overall energy system. This role of the built environment is not yet fully developed and exploited and the book content contributes to increasing the general awareness of achievable benefits. In particular, different topics are discussed, such as optimal control, innovative efficient technologies, methodological approaches, and country analysis about energy efficiency and energy flexibility potential of the built environment. The Special Issue offers valuable insights into the most recent research developments worldwide.

Keywords

Research & information: general --- real-time optimal control --- system coefficient of performance --- event-driven optimal control --- building energy efficiency --- heat wheel --- direct expansion cooling --- ventilation system --- energy consumption --- load forecast fuzzy (LFF) control --- SVM method --- building HVAC system --- time delay effect --- optimal control strategy --- phase change material --- hysteresis --- simulations --- EnergyPlus --- thermal energy storage --- green roofs --- buildings --- air conditioning --- energy efficiency --- mediterranean area --- building energy consumption --- building load forecasting --- rough set theory --- thermal improved of buildings --- single-family house --- detached house --- energy renovation --- deep retrofit --- power demand --- electric heating --- ground-source heat pump --- hybrid energy system --- microgrid --- military applications --- renewable energy --- remote areas --- electricity --- HVAC --- demand forecasting --- flexibility --- office building --- Smart Grid --- fault correction --- fault detection and diagnostics --- building operation --- field testing --- nZEB, BIPV --- room ventilation --- dynamic thermal insulation --- multi-parametric model --- energy optimization --- steady-state control --- building energy control system --- comfort and engineering --- buidling simulation (EnergyPlus and MATLAB) --- long-term thermal energy storage --- seasonal thermal energy storage --- thermochemical energy storage --- liquid sorption storage --- power-to-heat --- seasonal energy flexibility --- seasonal load shifting --- virtual battery effect --- design-time optimization --- cost modeling and simulation --- cyber-physical system --- electrical energy system --- sustainable energy planning --- sustainable power planning --- design space exploration --- SystemC-AMS --- window frames --- numerical analysis --- hot box --- sensitivity analysis --- demand flexibility --- control system --- optimization --- resiliency --- smart buildings --- distributed energy resources --- model predictive control --- data-driven model --- artificial neural network --- physical building model --- energy flexibility --- urban scale --- building energy simulation --- regression --- building archetypes --- energy performance of buildings --- solar passive systems --- low energy buildings --- smart districts --- smart grids --- smart readiness indicator --- energy performance of buildings directive --- load shifting --- demand response --- building-integrated photovoltaics --- BIPV --- hidden coloured BIPV module --- BIPV integration --- photovoltaic --- PV --- real-time optimal control --- system coefficient of performance --- event-driven optimal control --- building energy efficiency --- heat wheel --- direct expansion cooling --- ventilation system --- energy consumption --- load forecast fuzzy (LFF) control --- SVM method --- building HVAC system --- time delay effect --- optimal control strategy --- phase change material --- hysteresis --- simulations --- EnergyPlus --- thermal energy storage --- green roofs --- buildings --- air conditioning --- energy efficiency --- mediterranean area --- building energy consumption --- building load forecasting --- rough set theory --- thermal improved of buildings --- single-family house --- detached house --- energy renovation --- deep retrofit --- power demand --- electric heating --- ground-source heat pump --- hybrid energy system --- microgrid --- military applications --- renewable energy --- remote areas --- electricity --- HVAC --- demand forecasting --- flexibility --- office building --- Smart Grid --- fault correction --- fault detection and diagnostics --- building operation --- field testing --- nZEB, BIPV --- room ventilation --- dynamic thermal insulation --- multi-parametric model --- energy optimization --- steady-state control --- building energy control system --- comfort and engineering --- buidling simulation (EnergyPlus and MATLAB) --- long-term thermal energy storage --- seasonal thermal energy storage --- thermochemical energy storage --- liquid sorption storage --- power-to-heat --- seasonal energy flexibility --- seasonal load shifting --- virtual battery effect --- design-time optimization --- cost modeling and simulation --- cyber-physical system --- electrical energy system --- sustainable energy planning --- sustainable power planning --- design space exploration --- SystemC-AMS --- window frames --- numerical analysis --- hot box --- sensitivity analysis --- demand flexibility --- control system --- optimization --- resiliency --- smart buildings --- distributed energy resources --- model predictive control --- data-driven model --- artificial neural network --- physical building model --- energy flexibility --- urban scale --- building energy simulation --- regression --- building archetypes --- energy performance of buildings --- solar passive systems --- low energy buildings --- smart districts --- smart grids --- smart readiness indicator --- energy performance of buildings directive --- load shifting --- demand response --- building-integrated photovoltaics --- BIPV --- hidden coloured BIPV module --- BIPV integration --- photovoltaic --- PV


Book
Evaluation of Energy Efficiency and Flexibility in Smart Buildings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue “Evaluation of Energy Efficiency and Flexibility in Smart Buildings” addresses the relevant role of buildings as strategic instruments to improve the efficiency and flexibility of the overall energy system. This role of the built environment is not yet fully developed and exploited and the book content contributes to increasing the general awareness of achievable benefits. In particular, different topics are discussed, such as optimal control, innovative efficient technologies, methodological approaches, and country analysis about energy efficiency and energy flexibility potential of the built environment. The Special Issue offers valuable insights into the most recent research developments worldwide.

Keywords

Research & information: general --- real-time optimal control --- system coefficient of performance --- event-driven optimal control --- building energy efficiency --- heat wheel --- direct expansion cooling --- ventilation system --- energy consumption --- load forecast fuzzy (LFF) control --- SVM method --- building HVAC system --- time delay effect --- optimal control strategy --- phase change material --- hysteresis --- simulations --- EnergyPlus --- thermal energy storage --- green roofs --- buildings --- air conditioning --- energy efficiency --- mediterranean area --- building energy consumption --- building load forecasting --- rough set theory --- thermal improved of buildings --- single-family house --- detached house --- energy renovation --- deep retrofit --- power demand --- electric heating --- ground-source heat pump --- hybrid energy system --- microgrid --- military applications --- renewable energy --- remote areas --- electricity --- HVAC --- demand forecasting --- flexibility --- office building --- Smart Grid --- fault correction --- fault detection and diagnostics --- building operation --- field testing --- nZEB, BIPV --- room ventilation --- dynamic thermal insulation --- multi-parametric model --- energy optimization --- steady-state control --- building energy control system --- comfort and engineering --- buidling simulation (EnergyPlus and MATLAB) --- long-term thermal energy storage --- seasonal thermal energy storage --- thermochemical energy storage --- liquid sorption storage --- power-to-heat --- seasonal energy flexibility --- seasonal load shifting --- virtual battery effect --- design-time optimization --- cost modeling and simulation --- cyber-physical system --- electrical energy system --- sustainable energy planning --- sustainable power planning --- design space exploration --- SystemC-AMS --- window frames --- numerical analysis --- hot box --- sensitivity analysis --- demand flexibility --- control system --- optimization --- resiliency --- smart buildings --- distributed energy resources --- model predictive control --- data-driven model --- artificial neural network --- physical building model --- energy flexibility --- urban scale --- building energy simulation --- regression --- building archetypes --- energy performance of buildings --- solar passive systems --- low energy buildings --- smart districts --- smart grids --- smart readiness indicator --- energy performance of buildings directive --- load shifting --- demand response --- building-integrated photovoltaics --- BIPV --- hidden coloured BIPV module --- BIPV integration --- photovoltaic --- PV


Book
Evaluation of Energy Efficiency and Flexibility in Smart Buildings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue “Evaluation of Energy Efficiency and Flexibility in Smart Buildings” addresses the relevant role of buildings as strategic instruments to improve the efficiency and flexibility of the overall energy system. This role of the built environment is not yet fully developed and exploited and the book content contributes to increasing the general awareness of achievable benefits. In particular, different topics are discussed, such as optimal control, innovative efficient technologies, methodological approaches, and country analysis about energy efficiency and energy flexibility potential of the built environment. The Special Issue offers valuable insights into the most recent research developments worldwide.

Keywords

real-time optimal control --- system coefficient of performance --- event-driven optimal control --- building energy efficiency --- heat wheel --- direct expansion cooling --- ventilation system --- energy consumption --- load forecast fuzzy (LFF) control --- SVM method --- building HVAC system --- time delay effect --- optimal control strategy --- phase change material --- hysteresis --- simulations --- EnergyPlus --- thermal energy storage --- green roofs --- buildings --- air conditioning --- energy efficiency --- mediterranean area --- building energy consumption --- building load forecasting --- rough set theory --- thermal improved of buildings --- single-family house --- detached house --- energy renovation --- deep retrofit --- power demand --- electric heating --- ground-source heat pump --- hybrid energy system --- microgrid --- military applications --- renewable energy --- remote areas --- electricity --- HVAC --- demand forecasting --- flexibility --- office building --- Smart Grid --- fault correction --- fault detection and diagnostics --- building operation --- field testing --- nZEB, BIPV --- room ventilation --- dynamic thermal insulation --- multi-parametric model --- energy optimization --- steady-state control --- building energy control system --- comfort and engineering --- buidling simulation (EnergyPlus and MATLAB) --- long-term thermal energy storage --- seasonal thermal energy storage --- thermochemical energy storage --- liquid sorption storage --- power-to-heat --- seasonal energy flexibility --- seasonal load shifting --- virtual battery effect --- design-time optimization --- cost modeling and simulation --- cyber-physical system --- electrical energy system --- sustainable energy planning --- sustainable power planning --- design space exploration --- SystemC-AMS --- window frames --- numerical analysis --- hot box --- sensitivity analysis --- demand flexibility --- control system --- optimization --- resiliency --- smart buildings --- distributed energy resources --- model predictive control --- data-driven model --- artificial neural network --- physical building model --- energy flexibility --- urban scale --- building energy simulation --- regression --- building archetypes --- energy performance of buildings --- solar passive systems --- low energy buildings --- smart districts --- smart grids --- smart readiness indicator --- energy performance of buildings directive --- load shifting --- demand response --- building-integrated photovoltaics --- BIPV --- hidden coloured BIPV module --- BIPV integration --- photovoltaic --- PV

Listing 1 - 6 of 6
Sort by