Narrow your search

Library

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULB (7)

ULiège (7)

VIVES (7)

FARO (6)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2022 (3)

2021 (3)

2020 (3)

2019 (3)

2010 (1)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Computational Methods for Fracture
Author:
ISBN: 3039216872 3039216864 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Keywords

Brittle Fracture --- n/a --- microstructure --- fatigue crack growth --- fracture process zone (FPZ) --- crack shape change --- fracture network modeling --- Mohr-Coulomb --- fracture --- SBFEM --- topological insulator --- fatigue --- progressive collapse analysis --- Phase-field model --- loss of key components --- concrete creep --- compressive stress --- rail squats --- cracks --- force transfer --- rolling contact --- damage-plasticity model --- implicit gradient-enhancement --- extended scaled boundary finite element method (X-SBFEM) --- three-parameter model --- LEFM --- overall stability --- EPB shield machine --- metallic glass matrix composite --- phase field --- reinforced concrete core tube --- bulk damage --- ductility --- thermomechanical analysis --- incompatible approximation --- moderate fire --- finite element simulations --- shear failure --- FSDT --- gradient-enhanced model --- prestressing stress --- self-healing --- peridynamics --- damage-healing mechanics --- stress intensity factors --- damage --- dam stress zones --- shear band --- rock fracture --- random fracture --- surface crack --- plate --- steel reinforced concrete frame --- super healing --- brittle material --- geometric phase --- FE analysis --- grouting --- rock --- elastoplastic behavior --- parameters calibration --- screened-Poisson model --- anisotropic --- numerical simulation --- Discontinuous Galerkin --- brittle fracture --- XFEM/GFEM --- topological photonic crystal --- photonic orbital angular momentum --- conditioned sandy pebble --- yielding region --- finite element analysis --- fluid–structure interaction --- cracking risk --- Mindlin --- ABAQUS UEL --- particle element model --- HSDT --- cell-based smoothed-finite element method (CS-FEM) --- the Xulong arch dam --- fluid-structure interaction


Book
Applications of Finite Element Modeling for Mechanical and Mechatronic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern engineering practice requires advanced numerical modeling because, among other things, it reduces the costs associated with prototyping or predicting the occurrence of potentially dangerous situations during operation in certain defined conditions. Thus far, different methods have been used to implement the real structure into the numerical version. The most popular uses have been variations of the finite element method (FEM). The aim of this Special Issue has been to familiarize the reader with the latest applications of the FEM for the modeling and analysis of diverse mechanical problems. Authors are encouraged to provide a concise description of the specific application or a potential application of the Special Issue.

Keywords

Technology: general issues --- numerical modeling --- finite volumne method --- underground coal mine --- endogenous fires --- spontaneous combustion --- longwall --- ventilation system --- shot peening --- quantitative description of peening coverage --- high peening coverage --- Almen intensity --- residual compressive stress --- hybrid composite --- damage --- aramid fiber --- carbon fiber --- finite element method --- delamination --- cut bar method --- thermal conductivity --- steady-state --- heat lakes --- finite element modeling --- aluminum conductor steel-reinforced cable --- bend deformation --- stress --- friction coefficient --- wind loads --- fatigue fracture --- FEM --- SFEM --- active periodic structures --- smart materials --- PCHE --- misalignment --- channel --- utilization factor --- torsion springs --- FEA --- NURBS --- applied load --- local behaviors --- drill pipe joint --- design --- sealing properties --- experiment --- bias tire --- textile cord --- shrinkage --- rubber --- inflation analysis --- nondestructive inspection --- crack detection --- low loading --- surface profile --- turbine blade --- finite element analysis --- swingarm --- single-sided --- Finite Elements Analysis (FEA) --- three-wheel motorcycle --- topology optimization --- collision modeling --- mechanical parameters --- contact detection --- web deformation --- strain deviation --- design of experiment --- roll-to-roll process --- solid mechanics --- finite elements --- hp-adaptivity --- numerical locking --- detection --- assessment --- resolution --- equilibrated residual method --- sensitivity analysis --- p-enrichment --- bell crank --- natural frequency --- reverse engineering --- vibrometer --- Abaqus --- numerical simulation --- biomechanics --- head injury --- safety --- injury criteria --- disability --- driver --- HALE UAV --- generative modelling --- thin-layer composite structure --- electro-mechanical systems --- piezoelectrics --- hierarchical models --- first-order models --- transition models --- hpq/hp-approximations --- adaptivity --- stress gradients --- convergence --- damage detection


Book
Applications of Finite Element Modeling for Mechanical and Mechatronic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern engineering practice requires advanced numerical modeling because, among other things, it reduces the costs associated with prototyping or predicting the occurrence of potentially dangerous situations during operation in certain defined conditions. Thus far, different methods have been used to implement the real structure into the numerical version. The most popular uses have been variations of the finite element method (FEM). The aim of this Special Issue has been to familiarize the reader with the latest applications of the FEM for the modeling and analysis of diverse mechanical problems. Authors are encouraged to provide a concise description of the specific application or a potential application of the Special Issue.

Keywords

Technology: general issues --- numerical modeling --- finite volumne method --- underground coal mine --- endogenous fires --- spontaneous combustion --- longwall --- ventilation system --- shot peening --- quantitative description of peening coverage --- high peening coverage --- Almen intensity --- residual compressive stress --- hybrid composite --- damage --- aramid fiber --- carbon fiber --- finite element method --- delamination --- cut bar method --- thermal conductivity --- steady-state --- heat lakes --- finite element modeling --- aluminum conductor steel-reinforced cable --- bend deformation --- stress --- friction coefficient --- wind loads --- fatigue fracture --- FEM --- SFEM --- active periodic structures --- smart materials --- PCHE --- misalignment --- channel --- utilization factor --- torsion springs --- FEA --- NURBS --- applied load --- local behaviors --- drill pipe joint --- design --- sealing properties --- experiment --- bias tire --- textile cord --- shrinkage --- rubber --- inflation analysis --- nondestructive inspection --- crack detection --- low loading --- surface profile --- turbine blade --- finite element analysis --- swingarm --- single-sided --- Finite Elements Analysis (FEA) --- three-wheel motorcycle --- topology optimization --- collision modeling --- mechanical parameters --- contact detection --- web deformation --- strain deviation --- design of experiment --- roll-to-roll process --- solid mechanics --- finite elements --- hp-adaptivity --- numerical locking --- detection --- assessment --- resolution --- equilibrated residual method --- sensitivity analysis --- p-enrichment --- bell crank --- natural frequency --- reverse engineering --- vibrometer --- Abaqus --- numerical simulation --- biomechanics --- head injury --- safety --- injury criteria --- disability --- driver --- HALE UAV --- generative modelling --- thin-layer composite structure --- electro-mechanical systems --- piezoelectrics --- hierarchical models --- first-order models --- transition models --- hpq/hp-approximations --- adaptivity --- stress gradients --- convergence --- damage detection


Book
Applications of Finite Element Modeling for Mechanical and Mechatronic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern engineering practice requires advanced numerical modeling because, among other things, it reduces the costs associated with prototyping or predicting the occurrence of potentially dangerous situations during operation in certain defined conditions. Thus far, different methods have been used to implement the real structure into the numerical version. The most popular uses have been variations of the finite element method (FEM). The aim of this Special Issue has been to familiarize the reader with the latest applications of the FEM for the modeling and analysis of diverse mechanical problems. Authors are encouraged to provide a concise description of the specific application or a potential application of the Special Issue.

Keywords

numerical modeling --- finite volumne method --- underground coal mine --- endogenous fires --- spontaneous combustion --- longwall --- ventilation system --- shot peening --- quantitative description of peening coverage --- high peening coverage --- Almen intensity --- residual compressive stress --- hybrid composite --- damage --- aramid fiber --- carbon fiber --- finite element method --- delamination --- cut bar method --- thermal conductivity --- steady-state --- heat lakes --- finite element modeling --- aluminum conductor steel-reinforced cable --- bend deformation --- stress --- friction coefficient --- wind loads --- fatigue fracture --- FEM --- SFEM --- active periodic structures --- smart materials --- PCHE --- misalignment --- channel --- utilization factor --- torsion springs --- FEA --- NURBS --- applied load --- local behaviors --- drill pipe joint --- design --- sealing properties --- experiment --- bias tire --- textile cord --- shrinkage --- rubber --- inflation analysis --- nondestructive inspection --- crack detection --- low loading --- surface profile --- turbine blade --- finite element analysis --- swingarm --- single-sided --- Finite Elements Analysis (FEA) --- three-wheel motorcycle --- topology optimization --- collision modeling --- mechanical parameters --- contact detection --- web deformation --- strain deviation --- design of experiment --- roll-to-roll process --- solid mechanics --- finite elements --- hp-adaptivity --- numerical locking --- detection --- assessment --- resolution --- equilibrated residual method --- sensitivity analysis --- p-enrichment --- bell crank --- natural frequency --- reverse engineering --- vibrometer --- Abaqus --- numerical simulation --- biomechanics --- head injury --- safety --- injury criteria --- disability --- driver --- HALE UAV --- generative modelling --- thin-layer composite structure --- electro-mechanical systems --- piezoelectrics --- hierarchical models --- first-order models --- transition models --- hpq/hp-approximations --- adaptivity --- stress gradients --- convergence --- damage detection


Book
Earthquake and volcano deformation
Author:
ISBN: 9780691133027 0691133026 1282608215 9786612608216 140083385X 9781400833856 9781282608214 Year: 2010 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Earthquake and Volcano Deformation is the first textbook to present the mechanical models of earthquake and volcanic processes, emphasizing earth-surface deformations that can be compared with observations from Global Positioning System (GPS) receivers, Interferometric Radar (InSAR), and borehole strain- and tiltmeters. Paul Segall provides the physical and mathematical fundamentals for the models used to interpret deformation measurements near active faults and volcanic centers.Segall highlights analytical methods of continuum mechanics applied to problems of active crustal deformation. Topics include elastic dislocation theory in homogeneous and layered half-spaces, crack models of faults and planar intrusions, elastic fields due to pressurized spherical and ellipsoidal magma chambers, time-dependent deformation resulting from faulting in an elastic layer overlying a viscoelastic half-space and related earthquake cycle models, poroelastic effects due to faulting and magma chamber inflation in a fluid-saturated crust, and the effects of gravity on deformation. He also explains changes in the gravitational field due to faulting and magmatic intrusion, effects of irregular surface topography and earth curvature, and modern concepts in rate- and state-dependent fault friction. This textbook presents sample calculations and compares model predictions against field data from seismic and volcanic settings from around the world.Earthquake and Volcano Deformation requires working knowledge of stress and strain, and advanced calculus. It is appropriate for advanced undergraduates and graduate students in geophysics, geology, and engineering. Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Keywords

Rock deformation --- Strains and stresses --- Volcanism. --- Earthquakes. --- Deformations (Mechanics) --- Mathematical models. --- Volcanism --- Earthquakes --- Volcanisme --- Tremblements de terre --- Déformations (Mécanique) --- Mathematical models --- Deformations (Mechanics). --- Rock deformation - Mathematical models. --- Rock deformation -- Mathematical models. --- Strains and stresses - Mathematical models. --- Strains and stresses -- Mathematical models. --- Volcanicity --- Vulcanism --- Stresses and strains --- Elastic solids --- Mechanics --- Rheology --- Structural failures --- Quakes (Earthquakes) --- Earth movements --- Natural disasters --- Seismology --- Geodynamics --- Volcanology --- Architectural engineering --- Engineering, Architectural --- Architecture --- Flexure --- Statics --- Structural analysis (Engineering) --- Elasticity --- Engineering design --- Graphic statics --- Strength of materials --- Stress waves --- Structural design --- Deformation, Rock --- Geology, Structural --- Rock deformation - Mathematical models --- Strains and stresses - Mathematical models --- 1906 San Francisco earthquake. --- 1980 eruption of Mount St. Helens. --- 1989 Loma Prieta earthquake. --- 1992 Landers earthquake. --- 1999 Hector Mine earthquake. --- Active fault. --- Atmospheric refraction. --- Cauchy stress tensor. --- Compressive stress. --- Continental collision. --- Continuum mechanics. --- Crust (geology). --- Deformation (engineering). --- Deformation (mechanics). --- Deformation monitoring. --- Dike (geology). --- Dislocation. --- Displacement field (mechanics). --- Earthquake prediction. --- Earthquake rupture. --- Earthquake swarm. --- Elasticity (physics). --- Explosive eruption. --- Fault (geology). --- Fault friction. --- Figure of the Earth. --- Fracture mechanics. --- Fracture toughness. --- Fracture zone. --- Fracture. --- Friction. --- Geodetic datum. --- Geologic time scale. --- Geothermal gradient. --- Gravitational acceleration. --- Gravitational potential. --- Gravity Recovery and Climate Experiment. --- Hawaiian Volcano Observatory. --- Infinitesimal strain theory. --- Intraplate earthquake. --- Lava dome. --- Lava lake. --- Lava. --- Long Valley Caldera. --- Magma chamber. --- Magnetic anomaly. --- Melting point. --- Mount St. Helens. --- Nucleation. --- Orogeny. --- Oscillation. --- Parkfield earthquake. --- Plane stress. --- Plate tectonics. --- Porosity. --- Pressure gradient. --- Radiation stress. --- Resurgent dome. --- Rift zone. --- Rock (geology). --- Rock mechanics. --- San Andreas Fault. --- Seafloor spreading. --- Seismic gap. --- Seismic hazard. --- Seismic moment. --- Seismic risk. --- Seismic tomography. --- Seismic wave. --- Seismology. --- Shear modulus. --- Shear stress. --- Shear zone. --- Shearing (physics). --- Shield volcano. --- Strain energy. --- Strain rate. --- Stratovolcano. --- Stress concentration. --- Stress functions. --- Stress intensity factor. --- Subduction. --- Subsidence. --- Surface energy. --- Surface gravity. --- Surface stress. --- Tectonophysics. --- Tension (physics). --- Thermal expansion. --- Thrust fault. --- Traction (engineering). --- Transform fault. --- Types of volcanic eruptions. --- Vibration. --- Viscoelasticity. --- Volcanic hazards. --- Volcanic pipe. --- Volcano. --- Wavenumber. --- Yield (engineering).


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
Fatigue and Fracture of Non-metallic Materials and Structures
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.

Keywords

History of engineering & technology --- Ethylene-propylene diene monomer rubber EPDM --- grommet --- physical properties --- optimization of shape design --- reliability of rocks --- fatigue load --- strain energy --- red sandstone --- distribution of strain energy --- indices --- multi-scale simulation --- fatigue loading --- road bridge decks --- stagnant water --- fracture toughness --- blast furnace slag --- particle size --- compressive strength --- concrete --- concrete cracking --- crack patterns --- carbon fiber-reinforced polymers—CFRP --- RC strengthening (in bending and shear) --- RC beams --- soft materials --- polymers --- strain rate --- defect tolerance --- digital image correlation --- stress concentrators --- notch blunting --- lightning strike --- composite reinforced panel --- blow-off impulse --- electric-thermal coupling --- boundary effect --- size effect --- tensile strength --- physical modelling test --- rock structure --- fracture --- deformation --- mining --- neutral axis --- self-healing --- successive strain gauge --- flexural test --- bridge decks --- pseudo-cracking method --- data assimilation --- triaxial compression test --- sandstone --- rock mechanics --- rock fracture --- energy evolution --- rock-like material --- crack propagation --- discrete element --- strain rate tensor --- velocity field --- jointed rock --- uniaxial tension loading --- numerical analysis --- discrete element method --- strata structural behavior --- numerical simulation --- tension weakening --- fractures --- goaf consolidation --- fatigue life --- modified asphalt mixture --- four-point bending beam fatigue test --- two-point trapezoidal beam fatigue test --- overlay tester --- embedment --- shale rock --- proppant pack --- fracture width --- fly ash --- fineness --- fracture energy --- critical stress intensity factor --- assessment --- bridge evaluation --- compressive membrane action --- concrete bridges --- fatigue --- fatigue assessment --- live loads --- prestressed concrete --- punching shear --- scale model --- CFRP --- Low Velocity Impacts --- Cohesive Zone Model (CZM) --- Finite Element Analysis (FEA) --- VUMAT --- inter-laminar damage --- intra-laminar damage --- chemical grouting --- flowing water --- water plugging rate --- joint roughness coefficient --- damage model --- mode-II microcracks --- thermodynamics --- reinforced concrete beam --- impact and quasi-static loading --- retrofitting --- mineral grain shape --- particle flow code --- uniaxial compression simulation --- rock mechanical property --- mesostructure --- finite element analysis --- cohesive zone model --- high performance concrete --- fibre-reinforced high performance concrete --- compressive stress --- compressive modulus of elasticity --- maximum compressive strain --- tension --- pressure-tension apparatus --- nondestructive testing --- ultrasonic pulse velocity --- ABAQUS FEA --- high-temperature wedge splitting test --- fracture parameters --- reducing condition --- carbon-containing refractories --- strain-softening --- failure probability --- diamond composite --- material failure characteristics --- reliability --- rock cutting picks --- civil engineering --- fiber-reinforced composite laminate --- multi-directional laminate --- delamination --- elastic interface --- energy release rate --- mixed-mode fracture --- enhanced PG-NEM --- functionally graded material (FGM) --- stress intensity factor (SIF) --- modified interaction integral --- metallic glasses --- shear bands --- mechanical properties --- fracture mechanism --- small wind turbine --- stall regulation --- pitch regulation --- aeroelastic simulation --- n/a --- Fatigue --- Fracture mechanics --- Structural integrity --- Polymers --- Composites --- Ceramics --- Concrete --- Rock --- Soft matter --- Advanced materials. --- carbon fiber-reinforced polymers-CFRP


Book
Fatigue and Fracture of Non-metallic Materials and Structures
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.

Keywords

History of engineering & technology --- Ethylene-propylene diene monomer rubber EPDM --- grommet --- physical properties --- optimization of shape design --- reliability of rocks --- fatigue load --- strain energy --- red sandstone --- distribution of strain energy --- indices --- multi-scale simulation --- fatigue loading --- road bridge decks --- stagnant water --- fracture toughness --- blast furnace slag --- particle size --- compressive strength --- concrete --- concrete cracking --- crack patterns --- carbon fiber-reinforced polymers—CFRP --- RC strengthening (in bending and shear) --- RC beams --- soft materials --- polymers --- strain rate --- defect tolerance --- digital image correlation --- stress concentrators --- notch blunting --- lightning strike --- composite reinforced panel --- blow-off impulse --- electric-thermal coupling --- boundary effect --- size effect --- tensile strength --- physical modelling test --- rock structure --- fracture --- deformation --- mining --- neutral axis --- self-healing --- successive strain gauge --- flexural test --- bridge decks --- pseudo-cracking method --- data assimilation --- triaxial compression test --- sandstone --- rock mechanics --- rock fracture --- energy evolution --- rock-like material --- crack propagation --- discrete element --- strain rate tensor --- velocity field --- jointed rock --- uniaxial tension loading --- numerical analysis --- discrete element method --- strata structural behavior --- numerical simulation --- tension weakening --- fractures --- goaf consolidation --- fatigue life --- modified asphalt mixture --- four-point bending beam fatigue test --- two-point trapezoidal beam fatigue test --- overlay tester --- embedment --- shale rock --- proppant pack --- fracture width --- fly ash --- fineness --- fracture energy --- critical stress intensity factor --- assessment --- bridge evaluation --- compressive membrane action --- concrete bridges --- fatigue --- fatigue assessment --- live loads --- prestressed concrete --- punching shear --- scale model --- CFRP --- Low Velocity Impacts --- Cohesive Zone Model (CZM) --- Finite Element Analysis (FEA) --- VUMAT --- inter-laminar damage --- intra-laminar damage --- chemical grouting --- flowing water --- water plugging rate --- joint roughness coefficient --- damage model --- mode-II microcracks --- thermodynamics --- reinforced concrete beam --- impact and quasi-static loading --- retrofitting --- mineral grain shape --- particle flow code --- uniaxial compression simulation --- rock mechanical property --- mesostructure --- finite element analysis --- cohesive zone model --- high performance concrete --- fibre-reinforced high performance concrete --- compressive stress --- compressive modulus of elasticity --- maximum compressive strain --- tension --- pressure-tension apparatus --- nondestructive testing --- ultrasonic pulse velocity --- ABAQUS FEA --- high-temperature wedge splitting test --- fracture parameters --- reducing condition --- carbon-containing refractories --- strain-softening --- failure probability --- diamond composite --- material failure characteristics --- reliability --- rock cutting picks --- civil engineering --- fiber-reinforced composite laminate --- multi-directional laminate --- delamination --- elastic interface --- energy release rate --- mixed-mode fracture --- enhanced PG-NEM --- functionally graded material (FGM) --- stress intensity factor (SIF) --- modified interaction integral --- metallic glasses --- shear bands --- mechanical properties --- fracture mechanism --- small wind turbine --- stall regulation --- pitch regulation --- aeroelastic simulation --- n/a --- Fatigue --- Fracture mechanics --- Structural integrity --- Polymers --- Composites --- Ceramics --- Concrete --- Rock --- Soft matter --- Advanced materials. --- carbon fiber-reinforced polymers-CFRP

Listing 1 - 10 of 13 << page
of 2
>>
Sort by