Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (5)

Listing 1 - 5 of 5
Sort by

Book
Environmental Biocatalysis : From Remediation to Waste Valorization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue aims to highlight the dual potential of novel biocatalytic processes, where the first part is dedicated to waste valorization for the production of high value products, while the second part is focused on the detoxification of pollutants. Several examples of microbial systems employed for the valorization of waste streams derived by the forest, agricultural, and food industries or the use of whole-cell or enzyme approaches for the removal of nitrogen or dyes from industrial wastewaters are provided. Last but not least, an example of the utilization of polyhydroxyalkanoates (PHAs) was highlighted for the production of fatty acids, which were used for the enzymatic synthesis of sugar esters with antimicrobial properties.


Book
Environmental Biocatalysis : From Remediation to Waste Valorization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue aims to highlight the dual potential of novel biocatalytic processes, where the first part is dedicated to waste valorization for the production of high value products, while the second part is focused on the detoxification of pollutants. Several examples of microbial systems employed for the valorization of waste streams derived by the forest, agricultural, and food industries or the use of whole-cell or enzyme approaches for the removal of nitrogen or dyes from industrial wastewaters are provided. Last but not least, an example of the utilization of polyhydroxyalkanoates (PHAs) was highlighted for the production of fatty acids, which were used for the enzymatic synthesis of sugar esters with antimicrobial properties.


Book
Environmental Biocatalysis : From Remediation to Waste Valorization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue aims to highlight the dual potential of novel biocatalytic processes, where the first part is dedicated to waste valorization for the production of high value products, while the second part is focused on the detoxification of pollutants. Several examples of microbial systems employed for the valorization of waste streams derived by the forest, agricultural, and food industries or the use of whole-cell or enzyme approaches for the removal of nitrogen or dyes from industrial wastewaters are provided. Last but not least, an example of the utilization of polyhydroxyalkanoates (PHAs) was highlighted for the production of fatty acids, which were used for the enzymatic synthesis of sugar esters with antimicrobial properties.

Keywords

Technology: general issues --- mixotrophic --- heterotrophic --- lipids --- fatty acid methyl esters --- dairy wastewater --- birch hydrolysate --- green algae --- Coelastrella --- Chlorella --- DyP peroxidase --- oxidoreductase --- reactive dye --- decolorization --- biopolymers --- medium chain length polyhydroxyalkanoates (PHA) --- hydrolysed waste cooking oil --- Pseudomonas putida KT2440 --- biocatalysis --- bioprocess --- polyhydroxyalkanoate --- (R)-3-hydroxyacids --- sugar esters --- antimicrobial --- anammox --- immobilization --- wastewater treatment --- polyvinyl alcohol --- olive mill waste --- lignocellulosic residues --- Ganoderma lucidum --- Pleurotus ostreatus --- medicinal mushrooms --- glucan --- prebiotic --- Lactobacillus --- Bifidobacterium --- waste valorization --- laccase --- genome-mining --- heterologous expression --- Pseudomonas --- non-digestible oligosaccharides --- Celluclast® --- cellobiose --- conduritol-B-epoxide --- lignocellulose enzyme hydrolysis --- mixotrophic --- heterotrophic --- lipids --- fatty acid methyl esters --- dairy wastewater --- birch hydrolysate --- green algae --- Coelastrella --- Chlorella --- DyP peroxidase --- oxidoreductase --- reactive dye --- decolorization --- biopolymers --- medium chain length polyhydroxyalkanoates (PHA) --- hydrolysed waste cooking oil --- Pseudomonas putida KT2440 --- biocatalysis --- bioprocess --- polyhydroxyalkanoate --- (R)-3-hydroxyacids --- sugar esters --- antimicrobial --- anammox --- immobilization --- wastewater treatment --- polyvinyl alcohol --- olive mill waste --- lignocellulosic residues --- Ganoderma lucidum --- Pleurotus ostreatus --- medicinal mushrooms --- glucan --- prebiotic --- Lactobacillus --- Bifidobacterium --- waste valorization --- laccase --- genome-mining --- heterologous expression --- Pseudomonas --- non-digestible oligosaccharides --- Celluclast® --- cellobiose --- conduritol-B-epoxide --- lignocellulose enzyme hydrolysis


Book
Biomass Wastes for Energy Production
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Environmental problems are forcing a rethinking of the world’s energy supply system. In parallel, there is an increasing amount of global solid waste production. A fundamental shift toward greater reliance on biomass wastes in the world’s energy system is plausible because of ongoing major technological advances that hold the promise of making the conversion of biomass into high-quality energy carriers, like electricity and gaseous or liquid fuels, economically competitive with fossil fuels. Therefore, waste-to-energy systems have become a paramount topic for both industry and researchers due to interest in energy production from waste and improved chemical and thermal efficiencies with more cost-effective designs. This biomass shift is also important for industries to become more efficient by using their own wastes to produce their own energy in the light of the circular economy concept. This book on “Biomass Wastes for Energy Production” brings novel advances on waste-to-energy technologies, life cycle assessment, and computational models, and contributes to promoting rethinking of the world’s energy supply systems.


Book
Biomass Wastes for Energy Production
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Environmental problems are forcing a rethinking of the world’s energy supply system. In parallel, there is an increasing amount of global solid waste production. A fundamental shift toward greater reliance on biomass wastes in the world’s energy system is plausible because of ongoing major technological advances that hold the promise of making the conversion of biomass into high-quality energy carriers, like electricity and gaseous or liquid fuels, economically competitive with fossil fuels. Therefore, waste-to-energy systems have become a paramount topic for both industry and researchers due to interest in energy production from waste and improved chemical and thermal efficiencies with more cost-effective designs. This biomass shift is also important for industries to become more efficient by using their own wastes to produce their own energy in the light of the circular economy concept. This book on “Biomass Wastes for Energy Production” brings novel advances on waste-to-energy technologies, life cycle assessment, and computational models, and contributes to promoting rethinking of the world’s energy supply systems.

Keywords

Research & information: general --- Technology: general issues --- torrefaction --- biorenewable energy --- biowaste --- biocoal --- alternative fuel --- waste management --- manure --- thermal valorization --- thermogravimetric analysis --- differential scanning calorimetry --- autothermal gasification --- downdraft reactor --- thermodynamics --- chemical equilibrium --- carbon boundary point --- dairy wastewater --- biogas --- anaerobic digestion --- anaerobic horizontal flow reactor --- microwave radiation --- ultrasound --- biomass residues --- forestry --- thermal treatment --- biomass valorization --- torrefied material properties --- biomass gasification --- demonstration-scale plant --- syngas --- circular economy --- wastewater management --- activated carbon adsorption --- steam boilers --- co-firing --- biomass --- characteristics --- boiler efficiency --- GHG emissions --- decision parameters --- result parameters --- structural parameters --- peach pruning residues --- electricity production --- life cycle assessment --- LCA --- biomass-to-energy --- biomass waste --- competing uses --- biomass applications --- bio-based economy --- biomass value pyramid --- co-occurrence analysis --- internal combustion engines-generator --- small-scale systems --- energy efficiency --- techno-economic analysis --- Monte Carlo method --- organic waste --- energy recovery --- cost analysis --- torrefaction --- biorenewable energy --- biowaste --- biocoal --- alternative fuel --- waste management --- manure --- thermal valorization --- thermogravimetric analysis --- differential scanning calorimetry --- autothermal gasification --- downdraft reactor --- thermodynamics --- chemical equilibrium --- carbon boundary point --- dairy wastewater --- biogas --- anaerobic digestion --- anaerobic horizontal flow reactor --- microwave radiation --- ultrasound --- biomass residues --- forestry --- thermal treatment --- biomass valorization --- torrefied material properties --- biomass gasification --- demonstration-scale plant --- syngas --- circular economy --- wastewater management --- activated carbon adsorption --- steam boilers --- co-firing --- biomass --- characteristics --- boiler efficiency --- GHG emissions --- decision parameters --- result parameters --- structural parameters --- peach pruning residues --- electricity production --- life cycle assessment --- LCA --- biomass-to-energy --- biomass waste --- competing uses --- biomass applications --- bio-based economy --- biomass value pyramid --- co-occurrence analysis --- internal combustion engines-generator --- small-scale systems --- energy efficiency --- techno-economic analysis --- Monte Carlo method --- organic waste --- energy recovery --- cost analysis

Listing 1 - 5 of 5
Sort by