Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (3)

2021 (6)

Listing 1 - 9 of 9
Sort by

Book
Constructed and Floating Wetlands for Sustainable Water Reclamation
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Constructed wetlands (CWs) are engineered phytoremediation ecotechnologies. Herein, the two main biotic components, namely, plants and the bacterial community, work synergistically to remove a wide range of pollutants from wastewater. CWs have been used as sole treatment systems or as integrated modules within other types of wastewater-treatment plants (WWTPs), e.g., as tertiary treatment units. This Special Issue and Book gathers and appraises recent research outcomes regarding natural wetlands (i.e., mangroves) and engineered wetlands (constructed/floating systems), and highlights the underlying pollutant-degradation pathways and mechanisms for a wide range of organic and inorganic contaminants.


Book
Constructed and Floating Wetlands for Sustainable Water Reclamation
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Constructed wetlands (CWs) are engineered phytoremediation ecotechnologies. Herein, the two main biotic components, namely, plants and the bacterial community, work synergistically to remove a wide range of pollutants from wastewater. CWs have been used as sole treatment systems or as integrated modules within other types of wastewater-treatment plants (WWTPs), e.g., as tertiary treatment units. This Special Issue and Book gathers and appraises recent research outcomes regarding natural wetlands (i.e., mangroves) and engineered wetlands (constructed/floating systems), and highlights the underlying pollutant-degradation pathways and mechanisms for a wide range of organic and inorganic contaminants.


Book
Constructed and Floating Wetlands for Sustainable Water Reclamation
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Constructed wetlands (CWs) are engineered phytoremediation ecotechnologies. Herein, the two main biotic components, namely, plants and the bacterial community, work synergistically to remove a wide range of pollutants from wastewater. CWs have been used as sole treatment systems or as integrated modules within other types of wastewater-treatment plants (WWTPs), e.g., as tertiary treatment units. This Special Issue and Book gathers and appraises recent research outcomes regarding natural wetlands (i.e., mangroves) and engineered wetlands (constructed/floating systems), and highlights the underlying pollutant-degradation pathways and mechanisms for a wide range of organic and inorganic contaminants.


Book
Synthesis, Chracterization and Applications of Coated Composite Materials for Energy Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.


Book
Multifunctional Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the progress in nanotechnology and associated production methods, composite materials are becoming lighter, cheaper, more durable, and more versatile. At present, great progress has been made in the design, preparation, and characterization of composite materials, making them smarter and versatile. By creating new properties using suitable fillers and matrix, functional composites can meet the most challenging standards of users, especially in high-tech industries. Advanced composites reinforced by high-performance carbon fibers and nanofillers are popular in the automotive and aerospace industries thanks to their significant advantages, such as high specific strength to weight ratio and noncorrosion properties. In addition to the improvement of the mechanical performance, composite materials today are designed to provide new functions dealing with antibacterial, self-cleaning, self-healing, super-hard, and solar reflective properties for desired end-use applications. On the other hand, composite materials can contribute to mitigating environmental issues by providing renewable energy technologies in conjunction with multifunctional, lightweight energy storage systems with high performance and noncorrosive properties. They are also used to prepare a new generation of batteries and directly contribute to H2 production or CO2 reduction in fuels and chemicals. This Special Issue aims to collect articles reporting on recent developments dealing with preparative methods, design, properties, structure, and characterization methods as well as promising applications of multifunctional composites. It covers potential applications in various areas, such as anticorrosion, photocatalyst, absorbers, superhydrophobic, self-cleaning, antifouling/antibacterial, renewable energy, energy storage systems, construction, and electronics. The modeling and simulation of processes involving the design and preparation of functional and multifunctional composites as well as experimental studies involving these composites are all covered in this Special Issue.


Book
Synthesis, Chracterization and Applications of Coated Composite Materials for Energy Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.


Book
Multifunctional Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the progress in nanotechnology and associated production methods, composite materials are becoming lighter, cheaper, more durable, and more versatile. At present, great progress has been made in the design, preparation, and characterization of composite materials, making them smarter and versatile. By creating new properties using suitable fillers and matrix, functional composites can meet the most challenging standards of users, especially in high-tech industries. Advanced composites reinforced by high-performance carbon fibers and nanofillers are popular in the automotive and aerospace industries thanks to their significant advantages, such as high specific strength to weight ratio and noncorrosion properties. In addition to the improvement of the mechanical performance, composite materials today are designed to provide new functions dealing with antibacterial, self-cleaning, self-healing, super-hard, and solar reflective properties for desired end-use applications. On the other hand, composite materials can contribute to mitigating environmental issues by providing renewable energy technologies in conjunction with multifunctional, lightweight energy storage systems with high performance and noncorrosive properties. They are also used to prepare a new generation of batteries and directly contribute to H2 production or CO2 reduction in fuels and chemicals. This Special Issue aims to collect articles reporting on recent developments dealing with preparative methods, design, properties, structure, and characterization methods as well as promising applications of multifunctional composites. It covers potential applications in various areas, such as anticorrosion, photocatalyst, absorbers, superhydrophobic, self-cleaning, antifouling/antibacterial, renewable energy, energy storage systems, construction, and electronics. The modeling and simulation of processes involving the design and preparation of functional and multifunctional composites as well as experimental studies involving these composites are all covered in this Special Issue.


Book
Synthesis, Chracterization and Applications of Coated Composite Materials for Energy Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.


Book
Multifunctional Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the progress in nanotechnology and associated production methods, composite materials are becoming lighter, cheaper, more durable, and more versatile. At present, great progress has been made in the design, preparation, and characterization of composite materials, making them smarter and versatile. By creating new properties using suitable fillers and matrix, functional composites can meet the most challenging standards of users, especially in high-tech industries. Advanced composites reinforced by high-performance carbon fibers and nanofillers are popular in the automotive and aerospace industries thanks to their significant advantages, such as high specific strength to weight ratio and noncorrosion properties. In addition to the improvement of the mechanical performance, composite materials today are designed to provide new functions dealing with antibacterial, self-cleaning, self-healing, super-hard, and solar reflective properties for desired end-use applications. On the other hand, composite materials can contribute to mitigating environmental issues by providing renewable energy technologies in conjunction with multifunctional, lightweight energy storage systems with high performance and noncorrosive properties. They are also used to prepare a new generation of batteries and directly contribute to H2 production or CO2 reduction in fuels and chemicals. This Special Issue aims to collect articles reporting on recent developments dealing with preparative methods, design, properties, structure, and characterization methods as well as promising applications of multifunctional composites. It covers potential applications in various areas, such as anticorrosion, photocatalyst, absorbers, superhydrophobic, self-cleaning, antifouling/antibacterial, renewable energy, energy storage systems, construction, and electronics. The modeling and simulation of processes involving the design and preparation of functional and multifunctional composites as well as experimental studies involving these composites are all covered in this Special Issue.

Listing 1 - 9 of 9
Sort by