Narrow your search

Library

KU Leuven (17)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

VIVES (8)

ULiège (7)

FARO (5)

ULB (5)

More...

Resource type

book (25)


Language

English (25)


Year
From To Submit

2022 (7)

2020 (3)

2019 (3)

2018 (1)

2017 (1)

More...
Listing 1 - 10 of 25 << page
of 3
>>
Sort by

Book
Ergodic behavior of Markov processes : with applications to limit theorems
Author:
ISBN: 3110458713 9783110458947 3110458942 9783110458718 3110458705 9783110458701 9783110458930 3110458934 9783110458701 3110458705 Year: 2018 Publisher: Berlin, [Germany] ; Boston, [Massachusetts] : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and ProcessesMarkov Chains with Discrete State SpacesGeneral Markov Chains: Ergodicity in Total VariationMarkovProcesseswithContinuousTimeWeak Ergodic Rates Part II: Limit TheoremsThe Law of Large Numbers and the Central Limit TheoremFunctional Limit Theorems


Book
Applied algebraic dynamics
Authors: ---
ISBN: 1282187945 9786612187940 3110203014 Year: 2009 Publisher: Berlin ; New York : Walter De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This monograph presents recent developments of the theory of algebraic dynamical systems and their applications to computer sciences, cryptography, cognitive sciences, psychology, image analysis, and numerical simulations. The most important mathematical results presented in this book are in the fields of ergodicity, p-adic numbers, and noncommutative groups. For students and researchers working on the theory of dynamical systems, algebra, number theory, measure theory, computer sciences, cryptography, and image analysis.


Book
Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188)
Author:
ISBN: 1400850541 Year: 2014 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.


Book
Metastable liquids : concepts and principles
Author:
ISBN: 0691213941 Year: 1996 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metastable Liquids provides a comprehensive treatment of the properties of liquids under conditions where the stable state is a vapor, a solid, or a liquid mixture of different composition. It examines the fundamental principles that govern the equilibrium properties, stability, relaxation mechanisms, and relaxation rates of metastable liquids. Building on the interplay of kinetics and thermodynamics that determines the thermophysical properties and structural relaxation of metastable liquids, it offers an in-depth treatment of thermodynamic stability theory, the statistical mechanics of metastability, nucleation, spinodal decomposition, supercooled liquids, and the glass transition. Both traditional topics--such as stability theory--and modern developments--including modern theories of nucleation and the properties of supercooled and glassy water--are treated in detail. An introductory chapter illustrates, with numerous examples, the importance and ubiquity of metastable liquids. Examples include the ascent of sap in plants, the strategies adopted by many living organisms to survive prolonged exposure to sub-freezing conditions, the behavior of proteins at low temperatures, metastability in mineral inclusions, ozone depletion, the preservation and storage of labile biochemicals, and the prevention of natural gas clathrate hydrate formation. All mathematical symbols are defined in the text and key equations are clearly explained. More complex mathematical explanations are available in the appendixes.


Book
Dissipative, Entropy-Production Systems across Condensed Matter and Interdisciplinary Classical VS. Quantum Physics
Author:
ISBN: 3036552766 3036552758 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The thematic range of this book is wide and can loosely be described as polydispersive. Figuratively, it resembles a polynuclear path of yielding (poly)crystals. Such path can be taken when looking at it from the first side. However, a closer inspection of the book’s contents gives rise to a much more monodispersive/single-crystal and compacted (than crudely expected) picture of the book’s contents presented to a potential reader. Namely, all contributions collected can be united under the common denominator of maximum-entropy and entropy production principles experienced by both classical and quantum systems in (non)equilibrium conditions. The proposed order of presenting the material commences with properly subordinated classical systems (seven contributions) and ends up with three remaining quantum systems, presented by the chapters’ authors. The overarching editorial makes the presentation of the wide-range material self-contained and compact, irrespective of whether comprehending it from classical or quantum physical viewpoints.

Strong rigidity of locally symmetric spaces
Author:
ISBN: 0691081360 1400881838 9780691081366 Year: 1973 Volume: 78 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

Keywords

Differential geometry. Global analysis --- Riemannian manifolds --- Symmetric spaces --- Rigidity (Geometry) --- 512 --- Lie groups --- Geometric rigidity --- Rigidity theorem --- Discrete geometry --- Spaces, Symmetric --- Geometry, Differential --- Manifolds, Riemannian --- Riemannian space --- Space, Riemannian --- Manifolds (Mathematics) --- Groups, Lie --- Lie algebras --- Topological groups --- Algebra --- Lie groups. --- Riemannian manifolds. --- Symmetric spaces. --- Rigidity (Geometry). --- 512 Algebra --- Addition. --- Adjoint representation. --- Affine space. --- Approximation. --- Automorphism. --- Axiom. --- Big O notation. --- Boundary value problem. --- Cohomology. --- Compact Riemann surface. --- Compact space. --- Conjecture. --- Constant curvature. --- Corollary. --- Counterexample. --- Covering group. --- Covering space. --- Curvature. --- Diameter. --- Diffeomorphism. --- Differentiable function. --- Dimension. --- Direct product. --- Division algebra. --- Ergodicity. --- Erlangen program. --- Existence theorem. --- Exponential function. --- Finitely generated group. --- Fundamental domain. --- Fundamental group. --- Geometry. --- Half-space (geometry). --- Hausdorff distance. --- Hermitian matrix. --- Homeomorphism. --- Homomorphism. --- Hyperplane. --- Identity matrix. --- Inner automorphism. --- Isometry group. --- Jordan algebra. --- Matrix multiplication. --- Metric space. --- Morphism. --- Möbius transformation. --- Normal subgroup. --- Normalizing constant. --- Partially ordered set. --- Permutation. --- Projective space. --- Riemann surface. --- Riemannian geometry. --- Sectional curvature. --- Self-adjoint. --- Set function. --- Smoothness. --- Stereographic projection. --- Subgroup. --- Subset. --- Summation. --- Symmetric space. --- Tangent space. --- Tangent vector. --- Theorem. --- Topology. --- Tubular neighborhood. --- Two-dimensional space. --- Unit sphere. --- Vector group. --- Weyl group. --- Riemann, Variétés de --- Lie, Groupes de --- Geometrie differentielle globale --- Varietes riemanniennes


Book
Outer billiards on kites
Author:
ISBN: 1282458582 9786612458583 1400831970 9781400831975 0691142483 9780691142487 0691142491 9780691142494 9781282458581 6612458585 Year: 2009 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950's, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.

Keywords

Hyperbolic spaces. --- Singularities (Mathematics) --- Transformations (Mathematics) --- Geometry, Plane. --- Plane geometry --- Algorithms --- Differential invariants --- Geometry, Differential --- Geometry, Algebraic --- Hyperbolic complex manifolds --- Manifolds, Hyperbolic complex --- Spaces, Hyperbolic --- Geometry, Non-Euclidean --- Abelian group. --- Automorphism. --- Big O notation. --- Bijection. --- Binary number. --- Bisection. --- Borel set. --- C0. --- Calculation. --- Cantor set. --- Cartesian coordinate system. --- Combination. --- Compass-and-straightedge construction. --- Congruence subgroup. --- Conjecture. --- Conjugacy class. --- Continuity equation. --- Convex lattice polytope. --- Convex polytope. --- Coprime integers. --- Counterexample. --- Cyclic group. --- Diameter. --- Diophantine approximation. --- Diophantine equation. --- Disjoint sets. --- Disjoint union. --- Division by zero. --- Embedding. --- Equation. --- Equivalence class. --- Ergodic theory. --- Ergodicity. --- Factorial. --- Fiber bundle. --- Fibonacci number. --- Fundamental domain. --- Gauss map. --- Geometry. --- Half-integer. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperplane. --- Ideal triangle. --- Intersection (set theory). --- Interval exchange transformation. --- Inverse function. --- Inverse limit. --- Isometry group. --- Lattice (group). --- Limit set. --- Line segment. --- Linear algebra. --- Linear function. --- Line–line intersection. --- Main diagonal. --- Modular group. --- Monotonic function. --- Multiple (mathematics). --- Orthant. --- Outer billiard. --- Parallelogram. --- Parameter. --- Partial derivative. --- Penrose tiling. --- Permutation. --- Piecewise. --- Polygon. --- Polyhedron. --- Polytope. --- Product topology. --- Projective geometry. --- Rectangle. --- Renormalization. --- Rhombus. --- Right angle. --- Rotational symmetry. --- Sanity check. --- Scientific notation. --- Semicircle. --- Sign (mathematics). --- Special case. --- Square root of 2. --- Subsequence. --- Summation. --- Symbolic dynamics. --- Symmetry group. --- Tangent. --- Tetrahedron. --- Theorem. --- Toy model. --- Translational symmetry. --- Trapezoid. --- Triangle group. --- Triangle inequality. --- Two-dimensional space. --- Upper and lower bounds. --- Upper half-plane. --- Without loss of generality. --- Yair Minsky.


Book
Advances in Differential and Difference Equations with Applications 2020
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.

Keywords

Research & information: general --- Mathematics & science --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent


Book
Stability Problems for Stochastic Models: Theory and Applications II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most papers published in this Special Issue of Mathematics are written by the participants of the XXXVI International Seminar on Stability Problems for Stochastic Models, 21­25 June, 2021, Petrozavodsk, Russia. The scope of the seminar embraces the following topics: Limit theorems and stability problems; Asymptotic theory of stochastic processes; Stable distributions and processes; Asymptotic statistics; Discrete probability models; Characterization of probability distributions; Insurance and financial mathematics; Applied statistics; Queueing theory; and other fields. This Special Issue contains 12 papers by specialists who represent 6 countries: Belarus, France, Hungary, India, Italy, and Russia.

Keywords

Research & information: general --- Mathematics & science --- Probability & statistics --- inhomogeneous continuous-time Markov chain --- weak ergodicity --- rate of convergence --- sharp bounds --- differential inequalities --- forward Kolmogorov system --- prefetching --- optimization --- Markov decision processes --- random trees --- Galton–Watson --- capacitance --- dirichlet boundary value problem --- monte carlo method --- unbiased estimator --- von-neumann-ulam scheme --- network evolution --- random graph --- multi-type branching process --- continuous-time branching process --- 2- and 3-interactions --- Malthusian parameter --- Poisson process --- life-length --- extinction --- queuing system --- elastic traffic --- inpatient claim --- non-stationary intensity --- convergence analysis --- bounds on the rate of convergence --- wireless network --- file transfer --- daily traffic profile --- blocking probability --- continuous-time ehrenfest model --- first-passage time densities --- proportional intensity functions --- asymptotic behaviors --- multi-server queueing model --- rating --- self-sufficient servers --- self-checkout --- assistants --- multi-dimensional Markov chains --- retrial queue --- negative customers --- resource heterogeneous queue --- asymptotic analysis --- discrete time functional filter --- optimal unbiased estimation --- steady state --- equilibrium arrivals --- one-server queueing system --- orbit --- retrials --- limit theorem --- sum of independent random variables --- random sum --- asymptotic expansion --- asymptotic deficiency --- kurtosis --- parameter estimation --- gamma-exponential distribution --- mixed distributions --- generalized gamma distribution --- generalized beta distribution --- method of moments --- cumulants --- asymptotic normality


Book
Approximate Bayesian Inference
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Extremely popular for statistical inference, Bayesian methods are also becoming popular in machine learning and artificial intelligence problems. Bayesian estimators are often implemented by Monte Carlo methods, such as the Metropolis–Hastings algorithm of the Gibbs sampler. These algorithms target the exact posterior distribution. However, many of the modern models in statistics are simply too complex to use such methodologies. In machine learning, the volume of the data used in practice makes Monte Carlo methods too slow to be useful. On the other hand, these applications often do not require an exact knowledge of the posterior. This has motivated the development of a new generation of algorithms that are fast enough to handle huge datasets but that often target an approximation of the posterior. This book gathers 18 research papers written by Approximate Bayesian Inference specialists and provides an overview of the recent advances in these algorithms. This includes optimization-based methods (such as variational approximations) and simulation-based methods (such as ABC or Monte Carlo algorithms). The theoretical aspects of Approximate Bayesian Inference are covered, specifically the PAC–Bayes bounds and regret analysis. Applications for challenging computational problems in astrophysics, finance, medical data analysis, and computer vision area also presented.

Keywords

Research & information: general --- Mathematics & science --- bifurcation --- dynamical systems --- Edward–Sokal coupling --- mean-field --- Kullback–Leibler divergence --- variational inference --- Bayesian statistics --- machine learning --- variational approximations --- PAC-Bayes --- expectation-propagation --- Markov chain Monte Carlo --- Langevin Monte Carlo --- sequential Monte Carlo --- Laplace approximations --- approximate Bayesian computation --- Gibbs posterior --- MCMC --- stochastic gradients --- neural networks --- Approximate Bayesian Computation --- differential evolution --- Markov kernels --- discrete state space --- ergodicity --- Markov chain --- probably approximately correct --- variational Bayes --- Bayesian inference --- Markov Chain Monte Carlo --- Sequential Monte Carlo --- Riemann Manifold Hamiltonian Monte Carlo --- integrated nested laplace approximation --- fixed-form variational Bayes --- stochastic volatility --- network modeling --- network variability --- Stiefel manifold --- MCMC-SAEM --- data imputation --- Bethe free energy --- factor graphs --- message passing --- variational free energy --- variational message passing --- approximate Bayesian computation (ABC) --- differential privacy (DP) --- sparse vector technique (SVT) --- Gaussian --- particle flow --- variable flow --- Langevin dynamics --- Hamilton Monte Carlo --- non-reversible dynamics --- control variates --- thinning --- meta-learning --- hyperparameters --- priors --- online learning --- online optimization --- gradient descent --- statistical learning theory --- PAC–Bayes theory --- deep learning --- generalisation bounds --- Bayesian sampling --- Monte Carlo integration --- PAC-Bayes theory --- no free lunch theorems --- sequential learning --- principal curves --- data streams --- regret bounds --- greedy algorithm --- sleeping experts --- entropy --- robustness --- statistical mechanics --- complex systems

Listing 1 - 10 of 25 << page
of 3
>>
Sort by