Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

ULB (8)

ULiège (8)

VIVES (8)

More...

Resource type

book (20)


Language

English (20)


Year
From To Submit

2022 (6)

2021 (9)

2020 (3)

2019 (2)

Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Book
Statistical Analysis and Stochastic Modelling of Hydrological Extremes
Author:
ISBN: 3039216651 3039216643 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydrological extremes have become a major concern because of their devastating consequences and their increased risk as a result of climate change and the growing concentration of people and infrastructure in high-risk zones. The analysis of hydrological extremes is challenging due to their rarity and small sample size, and the interconnections between different types of extremes and becomes further complicated by the untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial and temporal scale models as well as biased or missing observations due to technical difficulties during extreme conditions. The complexity of analyzing hydrological extremes calls for robust statistical methods for the treatment of such events. This Special Issue is motivated by the need to apply and develop innovative stochastic and statistical approaches to analyze hydrological extremes under current and future climate conditions. The papers of this Special Issue focus on six topics associated with hydrological extremes: Historical changes in hydrological extremes; Projected changes in hydrological extremes; Downscaling of hydrological extremes; Early warning and forecasting systems for drought and flood; Interconnections of hydrological extremes; Applicability of satellite data for hydrological studies.


Book
Impact of Climate-Change on Water Resources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.


Book
Extreme Floods and Droughts under Future Climate Scenarios
Authors: --- ---
ISBN: 3039218999 3039218980 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydroclimatic extremes, such as floods and droughts, affect aspects of our lives and the environment including energy, hydropower, agriculture, transportation, urban life, and human health and safety. Climate studies indicate that the risk of increased flooding and/or more severe droughts will be higher in the future than today, causing increased fatalities, environmental degradation, and economic losses. Using a suite of innovative approaches this book quantifies the changes in projected hydroclimatic extremes and illustrates their impacts in several locations in North America, Asia, and Europe.


Book
Impact of Climate-Change on Water Resources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.


Book
Impact of Climate-Change on Water Resources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.


Book
Soil-Water Conservation, Erosion, and Landslide
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The predicted climate change is likely to cause extreme storm events and, subsequently, catastrophic disasters, including soil erosion, debris and landslide formation, loss of life, etc. In the decade from 1976, natural disasters affected less than a billion lives. These numbers have surged in the last decade alone. It is said that natural disasters have affected over 3 billion lives, killed on average 750,000 people, and cost more than 600 billion US dollars. Of these numbers, a greater proportion are due to sediment-related disasters, and these numbers are an indication of the amount of work still to be done in the field of soil erosion, conservation, and landslides. Scientists, engineers, and planners are all under immense pressure to develop and improve existing scientific tools to model erosion and landslides and, in the process, better conserve the soil. Therefore, the purpose of this Special Issue is to improve our knowledge on the processes and mechanics of soil erosion and landslides. In turn, these will be crucial in developing the right tools and models for soil and water conservation, disaster mitigation, and early warning systems.

Keywords

Technology: general issues --- Environmental science, engineering & technology --- landslide --- image classification --- spectrum similarity analysis --- extreme rainfall-induced landslide susceptibility model --- landslide ratio-based logistic regression --- landslide evolution --- Typhoon Morakot --- Taiwan --- vegetation community --- vegetation importance value --- root system --- soil erosion --- grey correlation analysis --- sediment yield --- RUSLE --- Lancang–Mekong River basin --- rainfall threshold --- landslide probability model --- debris flow --- Zechawa Gully --- mitigation countermeasures --- Jiuzhaigou Valley --- water erosion --- susceptibility --- Gaussian process --- climate change --- radial basis function kernel --- weighted subspace random forest --- extreme events --- extreme weather --- naive Bayes --- feature selection --- machine learning --- hydrologic model --- simulated annealing --- earth system science --- PSED Model --- loess --- ICU --- static liquefaction --- mechanical behavior --- pore structure --- alpine swamp meadow --- alpine meadow --- degradation of riparian vegetation --- root distribution --- tensile strength --- tensile crack --- soil management --- land cover changes --- Syria --- hillslopes --- gully erosion --- vegetation restoration --- soil erodibility --- land use --- bridge pier --- overfall --- scour --- landform change impact on pier --- shallow water equations --- wet-dry front --- outburst flood --- TVD-scheme --- MUSCL-Hancock method --- laboratory model test --- extreme rainfall --- rill erosion --- shallow landslides --- deep lip surface --- safety factor --- rainfall erosivity factor --- USLE R --- Deep Neural Network --- tree ring --- dendrogeomorphology --- landslide activity --- deciduous broadleaved tree --- Shirakami Mountains --- spatiotemporal cluster analysis --- landslide hotspots --- dam breach --- seepage --- overtopping --- seismic signal --- flume test --- breach model --- n/a --- Lancang-Mekong River basin


Book
Soil-Water Conservation, Erosion, and Landslide
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The predicted climate change is likely to cause extreme storm events and, subsequently, catastrophic disasters, including soil erosion, debris and landslide formation, loss of life, etc. In the decade from 1976, natural disasters affected less than a billion lives. These numbers have surged in the last decade alone. It is said that natural disasters have affected over 3 billion lives, killed on average 750,000 people, and cost more than 600 billion US dollars. Of these numbers, a greater proportion are due to sediment-related disasters, and these numbers are an indication of the amount of work still to be done in the field of soil erosion, conservation, and landslides. Scientists, engineers, and planners are all under immense pressure to develop and improve existing scientific tools to model erosion and landslides and, in the process, better conserve the soil. Therefore, the purpose of this Special Issue is to improve our knowledge on the processes and mechanics of soil erosion and landslides. In turn, these will be crucial in developing the right tools and models for soil and water conservation, disaster mitigation, and early warning systems.

Keywords

Technology: general issues --- Environmental science, engineering & technology --- landslide --- image classification --- spectrum similarity analysis --- extreme rainfall-induced landslide susceptibility model --- landslide ratio-based logistic regression --- landslide evolution --- Typhoon Morakot --- Taiwan --- vegetation community --- vegetation importance value --- root system --- soil erosion --- grey correlation analysis --- sediment yield --- RUSLE --- Lancang–Mekong River basin --- rainfall threshold --- landslide probability model --- debris flow --- Zechawa Gully --- mitigation countermeasures --- Jiuzhaigou Valley --- water erosion --- susceptibility --- Gaussian process --- climate change --- radial basis function kernel --- weighted subspace random forest --- extreme events --- extreme weather --- naive Bayes --- feature selection --- machine learning --- hydrologic model --- simulated annealing --- earth system science --- PSED Model --- loess --- ICU --- static liquefaction --- mechanical behavior --- pore structure --- alpine swamp meadow --- alpine meadow --- degradation of riparian vegetation --- root distribution --- tensile strength --- tensile crack --- soil management --- land cover changes --- Syria --- hillslopes --- gully erosion --- vegetation restoration --- soil erodibility --- land use --- bridge pier --- overfall --- scour --- landform change impact on pier --- shallow water equations --- wet-dry front --- outburst flood --- TVD-scheme --- MUSCL-Hancock method --- laboratory model test --- extreme rainfall --- rill erosion --- shallow landslides --- deep lip surface --- safety factor --- rainfall erosivity factor --- USLE R --- Deep Neural Network --- tree ring --- dendrogeomorphology --- landslide activity --- deciduous broadleaved tree --- Shirakami Mountains --- spatiotemporal cluster analysis --- landslide hotspots --- dam breach --- seepage --- overtopping --- seismic signal --- flume test --- breach model --- n/a --- Lancang-Mekong River basin


Book
Soil-Water Conservation, Erosion, and Landslide
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The predicted climate change is likely to cause extreme storm events and, subsequently, catastrophic disasters, including soil erosion, debris and landslide formation, loss of life, etc. In the decade from 1976, natural disasters affected less than a billion lives. These numbers have surged in the last decade alone. It is said that natural disasters have affected over 3 billion lives, killed on average 750,000 people, and cost more than 600 billion US dollars. Of these numbers, a greater proportion are due to sediment-related disasters, and these numbers are an indication of the amount of work still to be done in the field of soil erosion, conservation, and landslides. Scientists, engineers, and planners are all under immense pressure to develop and improve existing scientific tools to model erosion and landslides and, in the process, better conserve the soil. Therefore, the purpose of this Special Issue is to improve our knowledge on the processes and mechanics of soil erosion and landslides. In turn, these will be crucial in developing the right tools and models for soil and water conservation, disaster mitigation, and early warning systems.

Keywords

landslide --- image classification --- spectrum similarity analysis --- extreme rainfall-induced landslide susceptibility model --- landslide ratio-based logistic regression --- landslide evolution --- Typhoon Morakot --- Taiwan --- vegetation community --- vegetation importance value --- root system --- soil erosion --- grey correlation analysis --- sediment yield --- RUSLE --- Lancang–Mekong River basin --- rainfall threshold --- landslide probability model --- debris flow --- Zechawa Gully --- mitigation countermeasures --- Jiuzhaigou Valley --- water erosion --- susceptibility --- Gaussian process --- climate change --- radial basis function kernel --- weighted subspace random forest --- extreme events --- extreme weather --- naive Bayes --- feature selection --- machine learning --- hydrologic model --- simulated annealing --- earth system science --- PSED Model --- loess --- ICU --- static liquefaction --- mechanical behavior --- pore structure --- alpine swamp meadow --- alpine meadow --- degradation of riparian vegetation --- root distribution --- tensile strength --- tensile crack --- soil management --- land cover changes --- Syria --- hillslopes --- gully erosion --- vegetation restoration --- soil erodibility --- land use --- bridge pier --- overfall --- scour --- landform change impact on pier --- shallow water equations --- wet-dry front --- outburst flood --- TVD-scheme --- MUSCL-Hancock method --- laboratory model test --- extreme rainfall --- rill erosion --- shallow landslides --- deep lip surface --- safety factor --- rainfall erosivity factor --- USLE R --- Deep Neural Network --- tree ring --- dendrogeomorphology --- landslide activity --- deciduous broadleaved tree --- Shirakami Mountains --- spatiotemporal cluster analysis --- landslide hotspots --- dam breach --- seepage --- overtopping --- seismic signal --- flume test --- breach model --- n/a --- Lancang-Mekong River basin


Book
Advances in Large Scale Flood Monitoring and Detection
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Climate change and land use transformations have induced an increased flood risk worldwide. These phenomena are dramatically impacting ordinary life and the economy. Research and technology offer a new strategy to quantify and predict such phenomena and also mitigate the impact of flooding. In particular, the growing computational power is offering new strategies for a more detailed description of the flooding over large scales. This book offers an overview of the most recent outcomes of the research on this argument.


Book
Urban Runoff Control and Sponge City Construction
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid urbanization, sometimes lacking adequate planning and design, has led to worsening city syndrome situations, such as urban flooding, water pollution, heat island effects, and ecologic deterioration. Sponge city construction have become the new paradigm for a sustainable urban stormwater management strategy. Deviating from the traditional rapid draining approach, the new paradigm calls for the use of natural systems, such as soil and vegetation, as part of the urban runoff control strategy. It has become a widespread focus in urban water management research and practices globally. In this Special Issue reprint, there are 13 original scientific articles that address the different related urban runoff control issues. We are happy to see that all papers presented findings characterized as innovative and methodologically new. We hope that the readers can enjoy and learn deeply about urban runoff control and sponge city construction using the published material, and we hope that sharing of the researches results with the scientific community, policymakers and stakeholders can prompt the urban runoff control and sponge city construction globally.

Keywords

Technology: general issues --- History of engineering & technology --- urban runoff remediation --- Talipariti tiliaceum --- modular bioretention tree --- field study --- tree-pit --- Green-Ampt method --- infiltration --- overland flow --- urban flood modelling --- 1D/2D coupled modelling --- dual drainage modelling --- extreme rainfall --- flooding --- safety criteria --- urban drainage --- uncertainty --- combined sewer overflows --- optimization --- SWMM --- NSGA-III --- sponge city --- bioretention facility --- rain infiltration --- slope stability --- urban water management --- drainage function --- permeable pavement --- biological retention --- control-oriented model --- urban drainage system --- real-time optimization --- Simuwater --- Sponge City --- aquifer recharge --- urban stormwater --- green infrastructure --- low impact development --- Sustainable Development Goals --- non-point source pollution --- enhanced dephosphorization bioretention --- modified bioretention facility --- road stormwater runoff --- combined soil filter media --- soil moisture conservation rope --- microbial diversity --- urban stormwater runoff management --- field monitoring --- ABC Waters design features --- water quality --- bioretention --- swales --- low-impact development --- pilot exploration --- systematic demonstration --- construction scale --- stakeholders --- multifunctional decision-making framework --- cost-effectiveness --- site suitability --- stakeholders’ preference --- n/a --- stakeholders' preference

Listing 1 - 10 of 20 << page
of 2
>>
Sort by