Narrow your search
Listing 1 - 5 of 5
Sort by
The art of chemical process design
Authors: ---
ISBN: 044442699X 9780444426994 Year: 1986 Volume: 2 Publisher: Amsterdam : Elsevier,


Book
Gas Capture Processes
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces the recent technologies introduced for gases capture including CO2, CO, SO2, H2S, NOx, and H2. Various processes and theories for gas capture and removal are presented. The book provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students in the fields of environmental and chemical science and engineering.

Keywords

in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2


Book
Gas Capture Processes
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces the recent technologies introduced for gases capture including CO2, CO, SO2, H2S, NOx, and H2. Various processes and theories for gas capture and removal are presented. The book provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students in the fields of environmental and chemical science and engineering.

Keywords

History of engineering & technology --- in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2


Book
Gas Capture Processes
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces the recent technologies introduced for gases capture including CO2, CO, SO2, H2S, NOx, and H2. Various processes and theories for gas capture and removal are presented. The book provides a useful source of information for engineers and specialists, as well as for undergraduate and postgraduate students in the fields of environmental and chemical science and engineering.

Keywords

History of engineering & technology --- in situ gasification chemical looping combustion --- high-flux circulating fluidized bed --- counter-flow moving bed --- gas leakage --- coupling mechanism --- carbon capture and utilization --- biogas upgrading --- calcium carbonate precipitation --- chemical absorption --- gas pressure --- gas content --- gas basic parameters --- rapid estimation technology --- supercritical water oxidation --- high-pressure separation --- oxygen recovery --- energy recovery --- economic analysis --- coal-direct chemical looping combustion --- theoretical methodology --- high-flux --- pressure gradient --- gas mole fraction --- activity --- UNIFAC --- phase equilibrium --- threshold value --- CO2 capture --- calcium looping --- chemical sorption --- anti-attrition --- pore-former particle size --- Reaction --- kinetics --- carbon dioxide --- N-methyldiethanolamine --- L-Arginine --- stopped flow technique --- carbon capture --- CO2 sequestration --- steel-making waste --- steel slag --- H2S absorption --- amine solutions --- glycols --- desulfurization --- aqueous and non-aqueous solutions --- gas diffusion --- unipore diffusion model --- bidisperse diffusion model --- dispersive diffusion model --- refinery plants --- industrial gas streams --- petrochemical processes --- waste gases --- activated carbons --- catalytic activation --- physicochemical structure --- SO2 adsorption --- optimal conceptual design --- market prediction --- economic uncertainty --- environmental impact --- carbon dioxide separation --- Aspen Plus --- CCGT --- Taguchi --- Minitab --- optimization --- 2-Amino-2-Methyl-1-Propanol --- modelling and Simulation --- post-combustion capture --- exergy analysis --- flowsheeting configurations --- nanofluids --- absorption intensification --- mass transfer coefficient --- bubble column --- global warming --- membrane contactor --- removal of NO2 and CO2 --- coke oven --- carbonaceous deposits --- spectral analysis --- mechanism --- arsenene --- doping --- first principles study --- gas adsorption --- two-dimensional --- waste polyurethane foam --- physical activation --- high selectivity --- ultra-micropore --- mechanical activation --- iron ore --- carbonation --- calcination --- recyclability --- mechanochemical reactions --- carbonation kinetics --- MXene --- gas separation --- Knudsen diffusion --- molecular sieving --- transport mechanism --- spiral nozzle --- gas absorption --- spray atomization --- droplet size --- droplet velocity --- gas emission --- capture --- CO2

Listing 1 - 5 of 5
Sort by