Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULB (7)

ULiège (7)

VIVES (7)

More...

Resource type

book (17)


Language

English (17)


Year
From To Submit

2022 (3)

2021 (6)

2020 (7)

2017 (1)

Listing 1 - 10 of 17 << page
of 2
>>
Sort by

Book
Novel MRI Technologies for Structural and Functional Imaging of Tissues with Ultra-short T? Values
Author:
ISBN: 1000068880 3731506572 Year: 2017 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Conventional MRI has several limitations such as long scan durations, motion artifacts, very loud acoustic noise, signal loss due to short relaxation times, and RF induced heating of electrically conducting objects. The goals of this work are to evaluate and improve the state-of-the-art methods for MRI of tissue with short T?, to prove the feasibility of in vivo Concurrent Excitation and Acquisition, and to introduce simultaneous electroglottography measurement during functional lung MRI.


Book
Industrial Wireless Sensor Networks : Protocols and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs.


Book
Industrial Wireless Sensor Networks : Protocols and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs.


Book
Industrial Wireless Sensor Networks : Protocols and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs.


Book
Green, Energy-Efficient and Sustainable Networks
Authors: --- --- ---
ISBN: 3039280392 3039280384 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book Green, Energy-Efficient and Sustainable Networks provides insights and solutions for a range of problems in the field of obtaining greener, energy-efficient, and sustainable networks. The book contains the outcomes of the Special Issue on “Green, Energy-Efficient and Sustainable Networks” of the Sensors journal. Seventeen high-quality papers published in the Special Issue have been collected and reproduced in this book, demonstrating significant achievements in the field. Among the published papers, one paper is an editorial and one is a review, while the remaining 15 works are research articles. The published papers are self-contained peer-reviewed scientific works that are authored by more than 75 different contributors with both academic and industry backgrounds. The editorial paper gives an introduction to the problem of information and communication technology (ICT) energy consumption and greenhouse gas emissions, presenting the state of the art and future trends in terms of improving the energy-efficiency of wireless networks and data centers, as the major energy consumers in the ICT sector. In addition, the published articles aim to improve energy efficiency in the fields of software-defined networking, Internet of things, machine learning, authentication, energy harvesting, wireless relay systems, routing metrics, wireless sensor networks, device-to-device communications, heterogeneous wireless networks, and image sensing. The last paper is a review that gives a detailed overview of energy-efficiency improvements and methods for the implementation of fifth-generation networks and beyond. This book can serve as a source of information in industrial, teaching, and/or research and development activities. The book is a valuable source of information, since it presents recent advances in different fields related to greening and improving the energy-efficiency and sustainability of those ICTs particularly addressed in this book

Keywords

node speed --- linear recovery --- resource block allocation --- social awareness --- internet-of-things --- scheduling algorithm --- renewables --- neural network --- battery capacity --- energy awareness --- measurement structure --- optimization --- energy efficiency --- charging efficiency --- random structural matrices --- SDN --- water filling algorithm --- ONOS --- energy harvesting --- malware detection --- node density --- HetNets --- sustainability --- cooperative smart community --- adversarial samples --- spatial modulation --- NOMA --- 5G --- light-weight authentication --- green networking --- Device-to-Device (D2D) --- lightweight cipher --- mobile edge computing --- wireless power transfer --- adaptive link rate --- successive interference cancellation (SIC) --- directional charging vehicle --- self-interference cancellation --- proportional rate constraint --- inter-meeting time --- sustainable --- RWSN --- channel state information --- stochastic geometry --- networks --- green internet of things (IoT) --- PHY-layer --- IoT --- Markov chain --- traffic engineering --- QoS --- energy-efficient Ethernet --- power --- lightweight authentication --- energy aware routing --- authentication --- wired access --- amplify-and-forward --- software defined networking (SDN) --- image compressive sensing (CS) --- green --- edge computing --- LTE-A --- opportunistic networks --- RF Fingerprinting --- data centre --- multiple-input multiple-output --- Internet of Things --- machine learning --- peer discovery --- full-duplex --- industrial --- carbon footprint --- WSN --- imperfect CSI --- data center --- symbol error probability --- physical-layer authentication --- interference coordination --- clustering --- control and data plane --- wireless --- ICT --- bisection based optimal power allocation --- energy-efficiency --- consumer preferences --- real-time traffic


Book
Visible Light Communication (VLC)
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.

Keywords

Technology: general issues --- History of engineering & technology --- visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma–gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- n/a --- gamma-gamma function


Book
Wireless Power/Data Transfer, Energy Harvesting System Design
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on emerging wireless power/data and energy harvesting technologies, and highlights their fundamental requirements, followed by recent advancements. It provides a various technical overview and analysis of key techniques for wireless power/data and energy harvesting system design. The state-of-the-art system introduced in this book will benefit designers looking to develop wireless power transfer and energy harvesting technologies in a variety of fields, such as wearable, implantable devices, home appliances, and electric vehicles.

Keywords

Technology: general issues --- Energy industries & utilities --- wireless power transfer --- capacitive power transfer --- parallel-plate contactless power --- MIMO --- NOMA --- precoding --- power allocation --- user-clustering --- power splitter --- mobile sensor --- hopping sensor --- relocation protocol --- energy efficient protocol --- internet of things (IoTs) --- wireless sensor networks (WSNs) --- simulation --- inductive power --- dual impedance --- dual band --- reflected resistance --- frequency splitting --- multiple coils --- mutual inductance --- parasitic effect --- practical mutual inductance --- transfer impedance --- wearable heater --- inductive-power transmission --- textile coil --- impedance matching network --- parasitic resistance --- power loss --- reflection coefficient --- Smith chart --- cylindrical joint --- electromagnetic fields --- rotation-free structure --- soil sensing --- decision agriculture --- smart farming --- Wireless Power Transfer (WPT) --- compensation topology --- optimal load --- output power level --- electric vehicle (EV) --- capacitive power transfer (CPT) systems --- wireless power transfer (WPT) systems --- e-class inverter --- wireless resonance energy link system --- cognitive radio --- energy harvesting --- full-duplex relay --- simultaneous wireless information and power transfer (SWIPT) --- zero-forcing precoding --- shielded loop coil --- SAR --- coupled resonance --- coil resistance --- substrate size --- implantable biomedical microsystems --- data telemetry --- low power --- high data rate --- binary phase-shift keying demodulation --- electric vehicle --- center alignment point --- ferrite antenna --- laser wireless power transmission --- PV module --- maximum power point --- battery charging --- wirelessly-powered cage --- inductive power transmission --- implantable medical device --- animal experiment --- reference circuit --- inductive link --- implantable device --- line regulation --- wireless power telemetry --- supply independence --- balanced coil --- foreign object detection --- Maxwell bridge --- metal object detection --- wireless power transmission (WPT) --- power conversion efficiency (PCE) --- mm-sized implant --- duty cycle --- pulsed power transmission --- power transfer efficiency (PTE) --- rectifier


Book
Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.

Keywords

Technology: general issues --- optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing


Book
Recent Technical Developments in Energy-Efficient 5G Mobile Cells
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book addresses the true innovation in engineering design that may be promoted by blending together models and methodologies from different disciplines, and, in this book, the target was exactly to follow this approach to deliver a new disruptive architecture to deliver these next-generation mobile small cell technologies. According to this design philosophy, the work within this book resides in the intersection of engineering paradigms that includes “cooperation”, “network coding”, and “smart energy-aware frontends”. These technologies will not only be considered as individual building blocks, but re-engineered according to an inter-design approach resulting in the enabler for energy efficient femtocell-like services on the move. The book aims to narrow the gap between the current networking technologies and the foreseen requirements that are targeted at the future development of the 5G mobile and wireless communications networks in terms of the higher networking capacity, the ability to support more users, the lower cost per bit, the enhanced energy efficiency, and adaptability to new services and devices (for example, smart cities, and the Internet of things (IoT)).

Keywords

History of engineering & technology --- microstrip --- tuneable filter --- microwave filter --- 5G --- MEMSs --- varactor --- 4G --- CR --- MIMO --- reconfigurable antenna --- switch --- UWB --- WiMAX --- WLAN --- wireless communications --- cooperative NOMA --- multi-points DF relaying nodes --- half-duplex --- full-duplex --- Rayleigh fading channels --- Nakagami-m fading channels --- energy harvesting --- non-orthogonal multiple access --- multiple antenna --- transmit antenna selection --- outage probability --- pattern reconfigurable --- patch antenna --- s-parameters --- frequency reconfigurable --- dual-band Doherty power amplifier --- LTE-advanced --- high-efficiency --- phase offset lines --- impedance inverter network --- phase compensation network --- High power amplifiers --- high efficiency --- Doherty power amplifier --- GaN-HEMT --- small cell --- maximum transmit power --- UE --- open-loop power control --- interference --- ergodic capacity --- non-linear energy harvesting --- NOMA --- monopole antenna --- S-parameters --- 5G, 4/4.5G --- LTE --- ISM --- WiFi --- 5G antenna --- slot antenna --- mobile terminal antenna --- MIMO antenna --- medical applications --- miniaturized antenna --- arc-shaped --- dual-band --- chiral --- Tellegen --- multilayer CPW structure --- dispersion characteristics --- full-GEMT --- Muller’s method --- complex propagation constant --- acceleration procedure --- ISM 2.4 GHz --- isolation --- envelope correlation coefficient (ECC) --- channel capacity loss (CCL) --- 5G technology --- CPW-fed antenna --- diversity antenna --- future smartphones --- MIMO systems --- n/a --- Muller's method


Book
Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.

Keywords

Technology: general issues --- optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing

Listing 1 - 10 of 17 << page
of 2
>>
Sort by